
TTL Violation of DNS Resolvers in the Wild

Protick Bhowmick1, Md. Ishtiaq Ashiq1, Casey Deccio2, and
Taejoong Chung1

1 Virginia Tech
{protick, iashiq5, tijay}@vt.edu

2 Brigham Young University
casey@byu.edu

Abstract. The Domain Name System (DNS) provides a scalable name
resolution service. It uses extensive caching to improve its resiliency and
performance; every DNS record contains a time-to-live (TTL) value,
which specifies how long a DNS record can be cached before being dis-
carded. Since the TTL can play an important role in both DNS security
(e.g., determining a DNSSEC-signed response’s caching period) and per-
formance (e.g., responsiveness of CDN-controlled domains), it is crucial
to measure and understand how resolvers violate TTL.

Unfortunately, measuring how DNS resolvers manage TTL around the
world remains difficult since it usually requires having the cooperation of
many nodes spread across the globe. In this paper, we present a method-
ology that measures TTL-violating resolvers using an HTTP/S proxy
service, which allows us to cover more than 27 K resolvers in 9.5 K
ASes. Out of the 8,524 resolvers that we could measure through at least
five different vantage points, we find that 8.74% of them extend the
TTL arbitrarily, which potentially can degrade the performance of at
least 38% of the popular websites that use CDNs. We also report that
44.1% of DNSSEC-validating resolvers incorrectly serve DNSSEC-signed
responses from the cache even after their RRSIGs are expired.

1 Introduction

The Domain Name System (DNS) provides a scalable name resolution service.
It uses extensive caching to improve its resiliency and performance with a time-
to-live (TTL) value that specifies how long a DNS record can be cached before
being discarded [22]; the TTL value is assigned by the DNS authoritative servers.
DNS consumers (e.g., DNS resolvers) can cache the DNS responses during the
TTL so that the future requests can be fulfilled locally without sending extra
DNS queries to the DNS authoritative server.

Due to its resiliency and efficiency, DNS has evolved from simply providing
a mapping between human-readable names and network-level IP addresses, to
providing security features for other protocols (e.g., MTA-STS [19], TLSA [13], and
BIMI [4] for email protocols) or better performance by delegating its control
to another entity (e.g., CDN). For example, an email server can publish its

certificate information as a DNS record (i.e., TLSA) so that a sender can cross-
check the certificate. Thus, the service operators have to manage the DNS records
and their security information in a synchronous way. When they update (i.e.,
rollover) their credential information such as public key, they usually publish
the updated DNS records in advance [13], [19] and wait at least for the TTL
(or twice of TTL), expecting that DNS resolvers clear the old cache after then.
However, it is unclear how DNS clients follow such practice; for example, a DNS
resolver may cache DNS responses longer than its TTL to reduce DNS requests
towards authoritative servers. This may bring a negative impact on both security
and performance; for example, DNS resolvers that extends the TTL value may
impair the performance of CDNs, which typically uses a lower TTL value to
improve their resilliency and responsiveness [9].

However, it is challenging to understand how such TTL violations exist in
the wild without access to devices or users in affected networks; for example, it is
not straightforward to understand if a local DNS resolver in an ISP extends TTL
without deploying a vantage point in the ISP. To address this challenge, there
have been several successful prior approaches to measuring DNS TTL violations
by using datasets collected from DNS authoritative servers [15], residential net-
works [7], or using active probes such as RIPE Atlas [20]. While these approaches
have identified a number of resolvers that violates the TTL value in DNS records,
but it is typically difficult for others to replicate and often to scale [20], [16], and
mostly focus on public DNS resolvers [16].

In this paper, we explore an alternative approach to detecting DNS TTL
violations of resolvers using a residential proxy service called, BrightData, which
allows us to achieve measurements from over 274,570 end hosts and their 27,131
resolvers across 9,514 ASes in 220 countries. We discovered the TTL violation
is prevalent; for example, we find 745 (8.74%) resolvers that extends TTLs.
Furthermore, we find that another form of TTL violation that can happen to
DNSSEC-signed records; we find that 285 DNSSEC-validating resolvers that
return expired DNSSEC-signed responses when the TTL does not expire yet.

We make our analysis code and data public to the research community at

https://ttl-violation-study.github.io

2 Background and Related work

2.1 Related Work

There have been a long thread of work focusing on TTL violations in DNS
resolvers, using different datasets and methodologies. Early in 2004, Pang et
al. [15] used DNS logs collected from a large CDN, Akamai, to measure TTL
violations and reported that 47% of clients used the expired DNS record, which
indicates the prevalent violation of the TTL. Similarly, Callahan et al. [7] found
13.7% of user connections measured from residential network across 90 homes
used expired DNS records in 2013.

2

Schomp et al. [16] took an active measurement-based approach by sending
DNS queries to open resolvers from 100 PlanetLab nodes and found that 81%
of open resolvers did not consistently return the correct TTL values.

Some studies [3,12] found that TTL violations are more likely to happen
with small TTLs (e.g., 20 seconds); for example, Flavelet al. reported that 2%
of users used stale DNS responses with 20 seconds TTL even after 15 minutes
and Almeida et al. [18] found similar patterns in the traffic measured from a
European mobile network operator.

Recently, RIPE labs used 9,119 unique RIPE Atlas probes reported that 4.1%
of the measured resolvers increased the TTL value and 1.97% of the measured
resolvers decreased the TTL value [20].

While these studies have identified several different TTL violations, it is
still challenging to provide the overall TTL violation on the Internet as each of
them used a different approach (e.g., passive vs. active) to focus on a different
type of DNS resolvers (e.g., local vs. public resolver). Our goal is to develop an
approach that achieves the same goal, but without having privileged access (e.g.,
CDN logs), and without having to spend significant effort to deploy software or
hardware for users to install.

2.2 BrightData

In this work, we use BrightData, a residential proxy service, to character-
ize the behavior of resolvers. BrightData, formerly known as Luminati, is the
paid HTTP/S proxy service that routes traffic via residential nodes (called exit
nodes), who installed Hola Unblocker [14]. In order to route traffic, the client
needs to send a HTTP request to a BrightData server, called the super proxy;
the super proxy then forwards the request to an exit node. The exit node can
perform the HTTP request and return the response back to the client via the
super proxy.

BrightData offers options that can be passed with HTTP request to control
exit nodes. Figure 1 shows the overview of how the BrightData platform works.

Exitnode preference: BrightData allows clients a measure of control over which
exit node is chosen to forward the traffic. The client can select the country or au-
tonomous system (AS) that the exit node is located in by adding a -country-XX
(where XX is the ISO country code) or a -asn-YY (where YY is AS number) pa-
rameter to the HTTP request. The client is also allowed to choose the same exit
node for subsequent requests by adding a -session-XX (where XX is a random
number) to the HTTP request. Within 60 seconds, the client can choose the
same exit node by using the same session number.

Exitnode persistence: The client can find the hash of the exit node’s IP address
in the HTTP response header, x-luminati-ip. By adding the -ip-XX option to
the HTTP request (where XX is the hash of the IP address), the client can use
the same exit node if available. This option is extremely useful to measure the
TTL violation behavior of the resolvers; we can still measure the same resolvers

3

Fig. 1: Timeline of a request in BrightData: the client sends an HTTP request to
the super proxy ①; the super proxy makes a DNS request for the sanity check and
forward the request to an exit node ②∼③; the exit node uses its DNS resolver
and fetch the HTTP response ④∼⑥ and forward it back to the super proxy ⑦,
which return it to the client ⑧. Brightdata controls the Super Proxy and exit
nodes (shown with blue boxes).

(used by the same exit node) by finding the same exit node after a TTL with a
longer period of time (e.g., 60 minutes) expires.

DNS request location: By default, DNS resolution is done and cached at the
super proxy’s end; however, the client can specify the dns-remote option to the
HTTP request to make DNS resolution done by the the exit node (using the
exit node’s DNS server). In out experiment, we do so as we want the resolution
to be done at the client’s end.

With these options, we use BrightData to let exit nodes send HTTP re-
quests to our domains; the exit nodes will also send DNS requests to our DNS
authoritative server through their resolvers, which gives an opportunity to un-
derstand their behavior. In the following section, we introduce our experiment
methodology and its challenges.

3 TTL Extension in the wild

In this section, we describe how we use BrightData to understand how DNS
resolvers extend TTL in the DNS responses.

3.1 Methodology

At first glance, measuring and identifying resolvers that extend the TTL seems
straightforward: we pick one exit node and request it fetch the domain that
resolves IP1. After its TTL expires, we update its A record to IP2 and let the
same exit node fetch the same domain to see if they connect to IP1. However, in
practice it more difficult, because the client may use multiple DNS resolvers that
have many upstream resolvers, thus it may receive multiple DNS responses; this
behavior is common mainly to improve the performance; modern public DNS
servers usually have multiple caches with complex caching hierarchy [28], [1].

4

Fig. 2: Our methodology that extends the BrightData platform in Figure 1. We
control the DNS authoritative and web server (shown with green boxes); for the
same qname, our DNS authoritative server now returns a different A record to
each different resolver so that we can infer which DNS response the exit node
used by monitoring the incoming IP address of HTTP request.

However, we are not allowed to see which DNS response the exit node actually
used, making it hard for us to identify who has extended the TTL. To address
these issues, we return a different A record to each different resolver so that we can
identify which DNS resolver’s response the exit node has used by monitoring the
incoming IP address of the HTTP request for a certain domain. More specifically,
we proceed our experiments as follows as illustrated in Figure 2.

(a) As the first phase (P1), we first let an exit node fetch a unique subdomain,
http://<<UID>>.m.com. We extract the x-luminati-ip value from the
HTTP response header so that we can choose the same exit node after the
TTL expires.

(b) At our authoritative nameserver, for each resolver that looks up the same
qname, we pick an IP address that has never been used for the qname and
dynamically generate an A to serve the request. Then, we create an entry
that maps a tuple of qname and the resolver’s IP address to the served
IP address and insert it to the mapping table. If we observe more DNS
resolvers for the same qname than N , we discard the exit node from further
analysis.

(c) From the webserver, we examine the destination of the IP address of the
HTTP request to find the matched DNS resolver’s IP address in the map-
ping table. This allows us to find the DNS resolver that the exit node used.

(d) Then, we immediately retract all DNS entries from the DNS authoritative
name server to ignore all subsequent DNS requests, and we wait for TTL
to let the cached DNS responses expire.

(e) Once TTL expires, we set our authoritative name server to serve A that
points to the IP address (IPnew) that has never been assigned to any DNS
resolver. We then use -ip-XX option in the HTTP request to choose the
same node and let it fetch http://<<UID>>.m.com again. We call this step
the second phase.

5

In our experiment, we use 8 (N) different IP addresses based on the obser-
vation where 99.9% of HTTP requests incur less than 9 DNS requests.

Ethical Consideration: First of all, we adhere to the Terms of Service of Bright-
Data; our experiment followed their terms and condition and only used the com-
mercial services provided by Brightdata network. The peers are always explicitly
asked with a clear consent screen to opt-in the proxy network. Additionally, we
do not collect any PII of the exit nodes’ users and the exit nodes agreed to allow
Brightdata to route traffic through themselves in exchange for their free VPN
services. Our experiments only involve generating HTTP and DNS queries to
the DNS authoritative servers and HTTP servers that we control. Moreover, we
do not send any other queries to other domains that we do not control. Thus,
we believe that the experiments do not introduce any harm to the proxy service
or the exit nodes.

3.2 Results

During our measurement period, we are able to send 2,068,686 unique HTTP
queries served by 274,570 unique exit nodes and their 27,131 resolvers 3 in 9,514
ASes across 220 countries.

We also run our experiment with five different TTLs (1, 5, 15, 30, and 60
minutes) to investigate how TTL values impact on a DNS resolver’s caching
behavior.

Identifying potential TTL-extending resolvers is straightforward; when we
observe an exit node that still connects to the webserver with the old IP address,
we can find it by looking up the mapping table and label it as a potential TTL-
extending resolver. However, when we observe an exit node that uses the new
IP address (IPnew), we cannot simply mark all resolvers in the second phase as
TTL-honoring resolvers because some resolvers only show up in the first phase.
Thus, we mark resolvers as the potential TTL honoring resolvers only when they
appear in both the first and second phase.

Since we use exit nodes as a proxy to understand DNS resolvers behavior, we
cannot blindly use the results to characterize the DNS resolvers; for example, a
stub resolvers on the exit node may extend the TTL making their resolvers look
like TTL-extending ones. Thus, we focus on the resolvers where we have at least
5 exit nodes, this sample size allows us to draw strong inferences to characterize
their behaviors; this leaves us 9,031 resolvers, and their 234,605 exit nodes across
the different TTL setups. Then, for each resolver, we calculate the fraction of
the exit nodes that connect to the IPold; Figure 3 shows the results and we make
a number of observations. First, we find that there is a clear separation between
TTL-extending resolvers and TTL-honoring resolvers. For example, when we
set our TTL values to 60 minutes, 4,147 (92.5%) resolvers perfectly honor the
TTL while 14 (0.31%) resolvers extend TTL; the others (7.1%) show mixed

3Since we are only permitted to observe the only egress resolver IPs querying our
authoritative servers, we label each querying IP as a resolver.

6

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

% of exit nodes that fetch a stale DNS response

60 minutes
30 minutes
15 minutes

5 minutes
1 minute

Fig. 3: CDF of the fraction of the exit
nodes that use the the stale response
for each resolver.

Ours
Honor. Ext.

Direct Scan
Honor. 197 0
Ext. 0 16

Proxy Rack
Honor. 381 1
Ext. 0 62

Table 1: Validation results with direct
probing and ProxyRack

behaviors, which could be due to the stub or other frontend resolvers that we
could not measure. Second, we find that the number of TTL extending resolvers
constantly grows as we decrease the TTL value; for example, the percentage of
TTL extending resolvers increases from 14 (0.31%) to 129 (2.53%), 161 (2.87%),
414 (6.53%), and 745 (8.74%) as we decrease the TTL value from 60, 30, 15, 5
and 1 minute. Surprisingly, we also find that the set of TTL extending resolvers
that we measured with TTLx is always a subset of what we measure with TTLy

if TTLx is less than TTLy. This strongly suggests that some resolvers use a
default minimum TTL value; this could be due to reduce their resolution load;
for example, popular DNS software such as PowerDNS [26], KnotDNS [17] and
Unbound [29] has an option for this.

3.3 Cross-validation

We now attempt to cross validate our methodology by focusing on the resolvers
that always honor (or extend) the TTL with 1 minute, which leaves us 7,160 re-
solvers. For each resolver, we first attempt to directly send DNS queries to test
whether they respond, and if so, if they extend the TTL by looking up our domain
twice with a time gap of TTL. Since this is likely to allow us to measure public
resolvers, we also leverage another residential proxy service, ProxyRack [27] to
cover local resolvers as well; the coverage is limited (less than 2+ million resi-
dential proxies), but it permits to send an arbitrary UDP traffic so that we can
send a DNS request to its local resolver. For each of the rest of the resolvers,
we attempt to find exit nodes that share the same AS with the resolver and
send DNS requests. Table 1 shows the result; surprisingly, we find that all 212
resolvers that we could measure show the consistent behaviors our observation.
From the ProxyRack experiment, all 443 resolvers except one show the consis-
tent behavior; we found one resolver that our methodology and a ProxyRack
experiment disagree, but could not find the cause.

Interestingly, when we consider the number of TTL extending resolvers, we
see more TTL-violating resolvers in ProxyRack experiments than the direct scan-

7

Rank Country
Exit nodes

Ratio
w/ TTL-extended Total

1 Togo 91 106 85.84%

2 China 1,514 2,425 62.43%

3 Réunion 112 189 59.26%

4 Jamaica 175 481 36.38%

5 Sint Maarten 137 455 30.12%

6 France 81 329 24.62%

7 Ivory Coast 68 288 23.61%

8 Cayman Islands 105 461 22.77%

9 Ireland 347 1,726 20.1%

10 Switzerland 141 704 20.02%

11 Spain 489 2,603 18.79%

12 Myanmar 136 762 17.85%

13 Germany 36 226 15.93%

14 Finland 300 1,912 15.69%

15 Russia 8,808 57,283 15.38%

Table 2: Top fifteen countries sorted by the fraction of exit nodes that use TTL-
extending resolvers

ning (i.e., 14.0% vs. 7.5%). Since direct scanning only allows us to measure the
public resolvers, it may indicate that the local resolvers are more likely to extend
TTLs; we will explore this in the following section. In summary, we confirm that
our methodology can accurately find the TTL-extension policy of DNS resolvers.

3.4 Macroscopic Analysis

To obtain a macroscopic view of TTL extension phenomena, we first map ASes
to ISPs (as one ISP may operate many ASes) and countries using CAIDA’s AS-
organizations dataset [8]. Next, we group exit nodes according to country and
AS, and focus on the groups where we have at five exit nodes. We first notice that
the exit nodes that fetch expired DNS responses are widely spread across the
globe; Table 2 shows the top 15 countries sorted by the fraction of exit nodes
that use TTL-extending resolvers. For example, we found that in Togo, more
than 85% of exit nodes we measured experienced TTL extension.

Now, we focus on individual DNS resolvers; as we have observed from the
validation results, local resolvers tend to have more TTL-extending resolvers
than that of the public ones. Now, we try to find local resolvers by grouping exit
nodes by the DNS resolver.

Again, to minimize potential client side impact, we focus on those where we
observe at least 5 exit nodes using the DNS resolver.

We then identify ISP-provided DNS servers as ones where all exit nodes and
the DNS server belong to the same ISP. With this method, we have identified
6,871 ISP-provided DNS resolvers in our measurement. Table 3 shows the top
15 local resolvers, all of which exit nodes always receive the old, TTL-expired,
responses. The majority of these ISPs and DNS resolvers are in Russia and China;

8

Country ISP
DNS Exit

Servers Nodes

Russia

PSJC Vimpelcom 16 366
PSJC Rostelecom 12 124

Net By Net 8 58

TIS Dialog 6 108

MTS PSJC 4 69
MSK-IX 4 36

China

China Telecom 13 125
China Mobile 7 39

Tianjin Provincial 5 50
China Unicom 4 27

South Africa
MTN SA 6 49
Neology 5 97

Cayman Islands Cable & Wireless 7 88

Hong Kong HGC Global Communications 4 38

Trinidad and Tobago Columbus Comm. 6 115

Turkey Netonline Billisim. 5 84

Table 3: Table showing the top 15 local resolvers that extend TTLs.

for example, we measure 13 local resolvers in China Telecom, all of which extend
TTL; this strongly suggests that the TTL extension is imposed by the ISP.

3.5 Impact of TTL extension: Case Study of CDNs

It is known that CDN typically uses short TTLs for performance (e.g., load-
balancing) or security reasons [23,11]; for example, if a PoP (Point of Presence)
experiences outages, a short TTL can help them rapidly direct traffic to a dif-
ferent one. Thus, TTL-extending resolvers may hurt their responsiveness; for
example, Moura et al. [21] found that A records have relatively shorter TTLs
than other record types due to dynamic changes of server addresses in clouds
and CDNs. We now focus on Tranco 1M domains [25] and try to identify do-
mains that use CDNs. We note that most CDNs use DNS-based redirection
scheme such as Akamai [23] to redirect users to CDN infrastructures by using
Canonical Name (CNAME) records; for example, when a user requests a domain,
www.reddit.com, it will redirect to another domain controlled by Fastly, so
that they can handle the request as shown below.

$ dig www.reddit.com

...

;; ANSWER SECTION:

www.reddit.com. 3600 IN CNAME reddit.map.fastly.net.

reddit.map.fastly.net 60 IN A 151.101.1.140

We use a OpenINTEL dataset [24] that collects A records of Tranco Top 1M
domains including full CNAME expansion. For each domain, we focus on whether
a CNAME record exists in its lookup and whether the CNAME record was used to
direct traffic to popular CDNs; in order to do so, we manually compiled the
list of CNAME patterns for popular CDNs (e.g., e[1-9]∗.a.akamaiedge.net for

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000 10000 100000

C
D

F

TTL (seconds)

w/ CDNs
w/o CDNs

Fig. 4: CDF of TTLs in the Tranco top
1 million domains

CDN TTL Domains

Akamai 20 12,247 (99.9 %)

CloudFlare 300 10,736 (98.7 %)

Cloudfront 60 9,642 (99.8 %)

Fastly 30 6,237 (98.6 %)

Google 300 2,759 (98.8 %)

Azure 10 2,536 (47.0 %)

Netlify 20 1,531 (98.2 %)

XCDN 20 99 (47.8 %)

Alibaba 120 91 (58.7 %)

CDN77 15 68 (91.8 %)

Table 4: Top 10 CDNs and their TTL
of expanded A records used by most of
their domains

Akamai), which contains 38 CDNs in total.4 Figure 4 shows the CDF of the TTL
of the A records after their CNAMEs are expanded. We immediately notice that
the TTL of A records from CDN is much shorter than the rest of domains; for
example, 38% of TTLs from CDNs is less than 60 seconds. Considering that
we have found that 8.74% of resolvers extend the TTL when it is less than
or equal to 60 seconds (§3.2), this indicates that these resolvers will extend the
TTLs for more than 38% of CDN-managed websites, which potentially hurt their
responsiveness. For example, we find that Akamai sets the TTL to 20 seconds
for 99.9% of their domains; Table 4 shows the TTL values for the top 10 CDNs
in terms of the number of domains they serve and we can find that most of them
use very short TTLs (e.g., 10 seconds for Azure).

4 TTL Violation in DNSSEC

When it comes to DNSSEC, the TTL in a DNS response is not the only attribute
that determines the caching period; a DNSSEC-signed response can come with
its signature, which is called RRSIG records. RRSIG records also carry inception

and expiration dates that limits its validity, thus DNSSEC-supporting re-
solvers must evict DNS responses of which RRSIGs are expired from the cache,
even if their TTL is not expired yet [2]. Now, we also examine whether DNSSEC-
supporting resolvers in the wild correctly honor TTL values for signed DNS
records by expanding our methodology.

Experiment Settings: We follow the similar methodology as presented
in §3.1. Additionally, we make our domain name fully signed (e.g., uploading a DS
record to the parent zone) and provide DNS responses of which signature expires

4Our methodology can miss domains that delegate its name server to CDNs by
replacing their NS records with CDN’s ones. We could potentially identify them by
checking whether both of their web server and DNS server are managed by the same
CDN. However, some companies (e.g., Alibaba and Google) also provide VPS hosting
service, which will cause false-positive (e.g., the domain owner manages both servers
within the same VPS), thus we only focus on the CNAME expansion information.

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

The portion of exit nodes that fetch an expired A record

Fig. 5: 44.1% of resolvers serve expired (thus invalid) DNS responses.

earlier than its TTL. More specifically, we set our TTL value to 60 minutes for A
records and other DNSSEC-related records, and their corresponding RRSIGs to
be invalidated in 30 minutes. After sending the first request, we make the second
request after the expiration date, but within TTL to see whether the resolver
fetches a fresh A from the authoritative server.

Results: We run our measurement from October 27th, 2022 to Nov 1st,
2022 and obtain 91,634 exit nodes and 13,679 DNS resolvers. For the rest of this
section, we now focus on DNS resolvers where we observed at least 5 exit nodes
to minimize the potential client-side impacts, which leaves us 5,274 (38.5%)
resolvers with 75,684 (82.6%) exit nodes.

DNSSEC-validating resolvers: DNSSEC-validating resolvers must specify DO

(“DNSSEC OK”) bit in the EDNS prseudorecord so that the DNS authoritative
servers can provide the RRSIGs and other DNSSEC-related records. In our mea-
surement, we find 4,917 (93.2%) resolvers covering 94% (71,242) of exit nodes
enabled DO, which indicates that the majority of DNS resolvers seem to support
DNSSEC. However, not all DNS resolvers with DO correctly support DNSSEC.
For example, a study [6] found that 82% do not validate the response even though
they have requested and received RRSIG records. To consider the only DNSSEC-
validating resolvers, we make exit nodes to send another HTTP requests, which
is incorrectly signed (i.e., the RRSIG of A record is cryptographically invalid);
thus, if an exit node can only fetch the correct record, it indicates that its DNS
resolver actually performs DNSSEC validation. With the additional step, we find
646 (13.1)% resolvers covering 6,001 (8.4%) exit nodes perform validation.

DNSSEC-validating resolvers with TTL violation: We now calculate the per-
centage of exit nodes that fetch an expired DNS record for each resolver. As
shown in Figure 5, we find that 520 (80.4%) resolvers show consistent behavior
among the exit nodes; 235 (36.3%) resolvers (with 1,505 exit nodes) have fetched
the DNS response again from our authoritative server, which indicates that the
resolvers evicted the DNS responses with expired RRSIGs. However, 285 (44.1%
of considered) resolvers (with 2,645 exit nodes) have served the second client
request from its cache without making the second request to the authoritative
server, which is a direct violation of the DNSSEC standard [2].

11

5 Concluding Discussion

In this paper, we have leveraged a residential proxy network, BrightData, to
measure TTL violations in resolvers. BrightData manages millions of exit nodes,
which potentially opens an opportunity for researchers to understand DNS re-
solvers in the wild. However, since we are not permitted to directly send DNS
requests to DNS resolvers, we developed a methodology to pinpoint which DNS
response an exit node uses and which DNS resolver disregard TTL; we identified
745 resolvers that extend TTL values and 285 DNSSEC-validating resolvers that
do not consider validity period in cache. Before concluding the paper, we wish
to discuss our limitation and measuring resolvers that shorten the TTL.

Limitation: If an exit node uses a DNS resolver that leverages a multi-layer
distributed caching infrastructure like Cloudflare [28], our methodology can only
measure the backend caching DNS resolvers because we can only monitor the
incoming DNS requests to the authoritative server. This makes it hard for us
to determine where the TTL violation exactly happens; it could be due to the
frontend caches, stub resolvers, or middleboxes. Thus, we have only focused on
the resolvers that we are able to measure at least from five exit nodes that show
consistent behavior, which provides more confidence on our inference, but costs
us to lose the number of resolvers that we could analyze.

TTL shortening in the wild: A DNS resolver may cache the DNS response shorter
than the TTL; unlike TTL extension, however, caching DNS records shorter than
the TTL is not any violation of the DNS standard since RFC 2181 [10]. We can
use a similar methodology to detect resolvers that cache DNS records shorter
than the TTL set by the authoritative server; for example, some resolvers may
have a parameter that determines the maximum TTL mainly not to trust very
large TTL values for security purpose [29] [5]. However, resolvers can also decide
to evict the cached DNS response depending on its cache size and eviction policy,
which makes it a bit hard to consistently capture DNS resolvers that always cache
shorter than the TTL. By making the second request earlier than the TTL, we
are able to measure 49 (0.99%, out of 4,965) resolvers that always shorten the
TTL and 4653 (93.7%) resolvers that always preserve the original TTL, but we
also find 263 (5.3%) resolvers showing mixed behaviors, which suggests that their
eviction policy might have impacted on, and eventually, makes it hard for us to
further investigate.

Acknowledgments

We thank the anonymous reviewers and our shepherd, Paul Schmitt, for their
helpful comments. We also thank BrightData for their credits to use the service.
This research was supported in part by NSF grants CNS-2053363 and CNS-
2051166, and 4-VA, a collaborative partnership for advancing the Commonwealth
of Virginia.

12

References

1. K. Amit, S. Haya, and W. Michael. Counting in the Dark: DNS Caches Discovery
and Enumeration in the Internet. DSN, IEEE Computer Society, 2017.

2. R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. DNS Security Intro-
duction and Requirements. RFC 4033, IETF, 2005. http://www.ietf.org/rfc/
rfc4033.txt.

3. H. A. Alzoubi, M. I. Rabinovich, and O. S. The anatomy of LDNS clusters: findings
and implications for web content delivery. WWW, 2013.

4. S. Blank, P. Goldsten, T. Loder, T. Zinkn, and M. Bradshaw. Brand Indicators
for Message Identification (BIMI). IETF, 2021.

5. BIND max-cache-ttl. https://bind9.readthedocs.io/en/v9 18 7/

reference.html?highlight=max-cache-ttl.
6. T. Chung, R. van Rijswijk-Deij, B. Chandrasekaran, D. Choffnes, D. Levin, B. M.

Maggs, A. Mislove, and C. Wilson. A Longitudinal, End-to-End View of the
DNSSEC Ecosystem. USENIX Security, 2017.

7. T. Callahan, M. Allman, and M. R. On Modern DNS Behavior and Properties.
CCR, 43(4), 2013.

8. CAIDA ASOrganizations Dataset. http://www.caida.org/data/as-
organizations/.

9. DNS based load-balancing. https://www.cloudflare.com/learning/
performance/what-is-dns-load-balancing/.

10. R. Elz and R. Bush. Clarifications to the DNS Specification. RFC 2181, IETF,
1997.

11. Edge and Browser Cache TTL. https://developers.cloudflare.com/cache/
about/edge-browser-cache-ttl/.

12. A. Flavel, P. Mani, and D. A. Maltz. Re-evaluating the responsiveness of DNS-
based network control. LANMAN, 2014.

13. P. Hoffman and J. Schlyter. The DNS-Based Authentication of Named Entities
(DANE) Transport Layer Security (TLS) Protocol: TLSA. RFC 6698, IETF, 2012.

14. Hola VPN. http://hola.org/.
15. P. Jeffrey, A. Aditya, S. Anees, K. Balachander, and S. Srinivasan. On the Re-

sponsiveness of DNS-Based Network Control. IMC, 2004.
16. S. Kyle, C. Tom, R. Michael, and A. Mark. On Measuring the Client-Side DNS

Infrastructure. IMC, 2013.
17. cache-min-ttl in KnotDNS. https://knot-resolver.readthedocs.io/en/stable/

daemon-bindings-cache.html.
18. A. Mario, F. Alessandro, P. Diego, V.-R. Narseo, and V. Matteo. Dissecting DNS

Stakeholders in Mobile Networks. CoNEXT, 2017.
19. D. Margolis, M. Risher, B. Ramakrishnan, A. Brotman, and a. J. Jones. SMTP

MTA Strict Transport Security (MTA-STS). RFC 8461, IETF, 2018.
20. G. Moura. DNS TTL Violations in the Wild - Measured with RIPE At-

las. https://labs.ripe.net/author/giovane moura/dns-ttl-violations-in-

the-wild-measured-with-ripe-atlas.
21. G. Moura, J. H. a. R. de O. Schmidt, and W. Hardaker. Cache Me If You Can:

Effects of DNS Time-to-Live. IMC, 2019.
22. P. Mockapetris. Domain Names - Concepts and Facilities. RFC 1034, IETF, 1987.
23. E. Nygren, R. K. Sitaraman, and J. Sun. The Akamai network: a platform for

high-performance internet applications. OSR, 44(3), 2010.
24. OpenINTEL. https://www.openintel.nl/.

13

http://www.ietf.org/rfc/rfc4033.txt
http://www.ietf.org/rfc/rfc4033.txt
https://bind9.readthedocs.io/en/v9_18_7/reference.html?highlight=max-cache-ttl
https://bind9.readthedocs.io/en/v9_18_7/reference.html?highlight=max-cache-ttl
http://www.caida.org/data/as-organizations/
http://www.caida.org/data/as-organizations/
https://www.cloudflare.com/learning/performance/what-is-dns-load-balancing/
https://www.cloudflare.com/learning/performance/what-is-dns-load-balancing/
https://developers.cloudflare.com/cache/about/edge-browser-cache-ttl/
https://developers.cloudflare.com/cache/about/edge-browser-cache-ttl/
http://hola.org/
https://knot-resolver.readthedocs.io/en/stable/daemon-bindings-cache.html
https://knot-resolver.readthedocs.io/en/stable/daemon-bindings-cache.html
https://labs.ripe.net/author/giovane_moura/dns-ttl-violations-in-the-wild-measured-with-ripe-atlas
https://labs.ripe.net/author/giovane_moura/dns-ttl-violations-in-the-wild-measured-with-ripe-atlas
https://www.openintel.nl/

25. V. L. Pochat, T. V. Goethem, S. Tajalizadehkhoob, M. Korczyński, and W. Joosen.
TRANCO: A Research-Oriented Top Sites Ranking Hardened Against Manipula-
tion. NDSS, 2019.

26. minimum-ttl-override option in PowerDNS. https://doc.powerdns.com/
recursor/settings.html#minimum-ttl-override.

27. ProxyRack. https://www.proxyrack.com.
28. A. Randall, E. Liu, G. Akiwate, R. Padmanabhan, G. M. Voelker, S. Savage, and

A. Schulman. Trufflehunter: Cache Snooping Rare Domains at Large Public DNS
Resolvers. IMC, 2020.

29. Cache-min-ttl, Cache-max-ttl option in Unbound. https://nlnetlabs.nl/
documentation/unbound/unbound.conf/.

14

https://doc.powerdns.com/recursor/settings.html#minimum-ttl-override
https://doc.powerdns.com/recursor/settings.html#minimum-ttl-override
https://www.proxyrack.com
https://nlnetlabs.nl/documentation/unbound/unbound.conf/
https://nlnetlabs.nl/documentation/unbound/unbound.conf/

	TTL Violation of DNS Resolvers in the Wild

