
Decoding DNSSEC Errors at Scale: An Automated DNSSEC Error
Resolution Framework using Insights from DNSViz Logs

Md. Ishtiaq Ashiq
Virginia Tech

Blacksburg, Virginia, USA
iashiq5@vt.edu

Olivier Hureau
Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG

Grenoble, France
hureauo@univ-grenoble-alpes.fr

Casey Deccio
Brigham Young University

Provo, Utah, USA
casey@byu.edu

Taejoong Chung
Virginia Tech

Blacksburg, Virginia, USA
tijay@vt.edu

Abstract
Low adoption and high misconfiguration rates continue to blunt
the security benefits of DNSSEC. Drawing on 1.1M historical diag-
nostic snapshots covering 319K second-level and their subdomains
between 2020 and 2024 from the DNSViz service, this paper delivers
the first longitudinal, data-driven taxonomy of real-world DNSSEC
failures. The study shows that NSEC3misconfigurations, delegation
failures and missing/expired signatures account for more than 70%
of all bogus states, and that 18% of such domains remain broken.

Guided by these insights, we introduce DFixer: an offline tool
that (i) groups cascaded error codes into root causes, and (ii) auto-
generates high-level instructions and corresponding concrete BIND
command sequences to repair them. Evaluation with a purpose-
built ZReplicator testbed demonstrates that DFixer remedies 99.99%
of observed errors in seconds. The curated error-to-command map-
ping is openly released to foster wider, more reliable DNSSEC
deployment.

CCS Concepts
• Networks → Network measurement; Application layer pro-
tocols; • Security and privacy→ Security protocols.

Keywords
DNS, DNSSEC, DNS Diagnostics, Network Measurement

ACM Reference Format:
Md. Ishtiaq Ashiq, Olivier Hureau, Casey Deccio, and Taejoong Chung .
2025. Decoding DNSSEC Errors at Scale: An Automated DNSSEC Error
Resolution Framework using Insights from DNSViz Logs. In Proceedings
of the 2025 ACM Internet Measurement Conference (IMC ’25), October 28–
31, 2025, Madison, WI, USA. ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/3730567.3764428

This work is licensed under a Creative Commons Attribution 4.0
International License.
IMC ’25, Madison, WI, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1860-1/25/10
https://doi.org/10.1145/3730567.3764428

1 Introduction
DNS Security Extensions (DNSSEC) [6–8] were introduced in 1999
to prevent DNS spoofing and on-path tampering by adding crypto-
graphic authenticity checks to DNS data. Each zone signs its records
(RRSIG) using a private key and publishes the corresponding public
key (DNSKEY), while the parent zone holds a DS record that attests
to the child’s key. A resolver thus constructs a “chain of trust” from
the queried domain up to the root, rejecting records with missing
or invalid signatures.

Despite these security benefits, DNSSEC adoption remains strik-
ingly low. Only around 5% of .com and .net domains [1] are signed,
with a similarly small fraction (7%) overall [16]. Moreover, miscon-
figuration rates are alarmingly high: more than 30% of “signed”
domains are effectively unresolvable [23]. Administrators must
contend with intricate tasks such as key generation and rotation,
RRSIG updates, and DS synchronization at the parent. A single
oversight can cascade into multiple validation failures.

Real-world outages underscore how serious these misconfigu-
rations can be. At the TLD level, .nz and .fj both experienced
DNSSEC-related interruptions that broke resolution for large swaths
of users [18, 19]. Evenmajor platforms like Slack [36] suffered down-
time when their DNSSEC setup lapsed. These episodes highlight
the fragility of DNSSEC and the difficulty of maintaining secure,
signed zones at scale.

Administrators seeking help often turn to diagnostic tools such
as DNSViz [20]. While these tools accurately flag specific errors
(e.g., missing DNSKEY, expired RRSIG), they do not isolate the root
cause or supply a direct path to remediation. In practice, an operator
may see dozens of messages in DNSVizwithout knowing which one
or two errors trigger them all. Many resort to turning off DNSSEC
rather than face repeated breakages and troubleshooting [9, 24].

In this paper, we harness DNSViz’s historical logs to examine
the full lifecycle of DNSSEC errors. We investigate which issues
appear most often, how long they persist, and whether adminis-
trators eventually fix or abandon them. Our longitudinal analysis
shows that certain errors—such as nonzero NSEC3 iteration count
or missing signatures and non-existence proofs—appear more than
others. These findings emphasize the need for a solution that goes
beyond mere diagnosis and actually guides operators toward pre-
cise, actionable fixes.

1

https://doi.org/10.1145/3730567.3764428
https://doi.org/10.1145/3730567.3764428
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3730567.3764428

IMC ’25, October 28–31, 2025, Madison, WI, USA Md. Ishtiaq Ashiq, Olivier Hureau, Casey Deccio, and Taejoong Chung

Building on these insights, we introduceDFixer, a domain-specific
tool that unifies error detection, root-cause identification, and au-
tomatic remediation. We curate a mapping from each commonly
observed DNSSEC misconfiguration (e.g., missing or revoked key,
invalid signature) to the series of BIND commands needed to re-
store a valid chain of trust. Unlike general-purpose large language
models, which often neglect error dependencies and produce vague
suggestions, our approach yields correct and reproducible results
for real misconfigurations found in DNSViz logs.

Our main contributions are:
(1) ComprehensiveMeasurement of DNSSEC Errors.Using DNSViz’s

historical data, we provide a fine-grained analysis of which
DNSSEC errors dominate, how they propagate, and how
quickly administrators address them.

(2) Root-Cause Diagnostics & Automated Fixes.We designDFixer,
a pipeline that correlates multiple secondary errors into a
few root cause(s) and then generates exact BIND commands
(e.g., dnssec-signzone, dnssec-keygen) to fix them. Our
evaluation with more than 296K erroneous zones shows that
DFixer can fully resolve DNSSEC-related errors in 99.99% of
them.

(3) Validation via Controlled Replication.We replicate real mis-
configurations in a local sandbox using our tool
ZReplicator to ensure that DFixer’s recommended fixes gen-
uinely resolve the issues when rechecked with DNSViz. Out
of 296K zones with diverse combinations of DNSSEC errors,
we were able to exactly emulate 79% of them using ZRepli-
cator.

We believe DFixer can help reduce administrator error rates
and promote sustainable DNSSEC deployment. To facilitate fur-
ther development and reproduction, we release the codes for both
ZReplicator and DFixer at

https://dnssec-debugger.netsecurelab.org

2 Background
2.1 DNS and DNSSEC
The Domain Name System (DNS) underpins the Internet’s mapping
of domain names to specific values, such as the IP address of a server
or the location of an email service. For example, an A record binds
a domain name to an IPv4 address, while an NS record designates
the authoritative name server for a domain.

However, the original DNS protocol offered no cryptographic
safeguards, leaving it susceptible to attacks in which adversaries
could forge responses. In response, the DNS Security Extensions
(DNSSEC) [6–8, 22] were introduced to provide data authenticity
and integrity. DNSSEC introduces the following new record types
to secure the domain hierarchy:
• DNSKEY records: Public keys that authenticate DNS data. Typi-
cally, each zone publishes two DNSKEY records: one for routine
zone signing (known as zone-signing key or ZSK) and another
for key-signing tasks (known as key-signing key or KSK), thereby
compartmentalizing cryptographic responsibilities.

• RRSIG (Resource Record Signature) records: Cryptographic signa-
tures covering entire sets of DNS records—so-called “RRSets”—for
a particular domain name and record type. For example, a single

RRSIG secures all A records under example.org, ensuring they
have not been tampered with. The RRSIG is generated with a pri-
vate key that corresponds to the public key declared in DNSKEY

records.

• DS (Delegation Signer) records: Hashes of DNSKEY records stored
in the parent zone. These hashes establish a secure link from
child to parent, continuing upward until reaching the DNS root.
Like other record types, DS entries are authenticated via RRSIG
records.

• NSEC/NSEC3 (Next Secure) records: NSEC records are used to
prove the non-existence of specific records of a domain. NSEC3
was introduced later [28] as a variant of NSEC to prevent zone
enumeration using hashing and reduce the size of the zone file
via the opt-out flag.

By cryptographically chaining each layer of the DNS hierarchy to
the root, DNSSEC fortifies the global naming system against forgery
and manipulation. The carefully designed interplay of DNSKEY,
RRSIG, and DS records ensures that DNS responses can be validated
from the root down to individual subdomains.

2.2 DNSSEC Status
DNSSEC enables a resolver to classify DNS answers into distinct
validation states. A security-aware resolver generally assigns one
of three labels to a response:

• Secure, which indicates that the answer has been cryptographi-
cally verified. In this case, the resolver was able to build a com-
plete chain of trust from a known trust anchor (e.g., the DNS root)
down to the DNS record in question using all required DNSSEC
records (e.g., DS and RRSIG records).

• Insecure, which indicates that at some delegation point, there
exists a signed proof of the non-existence of a DS record. This
situation typically arises when the queried domain lies in an
unsigned zone (or beneath one).

• Bogus, which indicates a DNSSEC failure: the resolver expected
the answer to be Secure (the zone is supposed to be signed), but
the validation could not be successfully completed. In this case,
the resolver believes there should have been a valid chain of trust,
yet one or more checks failed; for example, a required signature
was invalid or missing, or a DNSKEY did not match its DS record.

2.3 DNSSEC Deployment and Management
Despite over a decade of advocacy, DNSSEC’s global adoption has
remained remarkably low. Sources like the Internet Society [2, 17]
and Verisign’s DNSSEC Scoreboard [1] indicate that only around
5% of .com and .net domains are signed.

Operational Challenges. Registrar support for DNSSEC remains
uneven; for example, only five registrars responsible for 50% of do-
main name registrations offered robust DNSSEC tooling in 2019 [11,
35]. Many organizations delegate DNS hosting to third parties (e.g.,
Cloudflare [12]), introducing further hurdles such as inconsistent
DS record [11]. On the resolver side, Chung et al. [10] found that
only 12% of security-aware resolvers actually validated DNSSEC
records, undermining the protocol’s potential impact.

2

https://dnssec-debugger.netsecurelab.org

Decoding DNSSEC Errors at Scale: An Automated DNSSEC Error Resolution Framework IMC ’25, October 28–31, 2025, Madison, WI, USA

Inherent Complexity. Alongside operational challenges, the in-
herent complexity in DNSSEC’s fundamental design actively hin-
ders its broader adoption [29]. The standard demands formeticulous
precision and coordination between multiple entities which makes
routine tasks like key or algorithm rollovers risky if any actor in
the parent-child chain fails to follow best practices [31, 32]. For
example, 8% of resolvers failed to adopt new root KSK even after
a considerable period which led to the postponement of root KSK
rollover in 2017 [31]. Deccio et al. [13] also showed that 24% of
2,634 measured zones exhibited configurations guaranteed to fail
due to administrative complexity.

Real-World Failures. Misconfigurations have caused high-profile
outages at the TLD level [18, 19] and for major platforms like
Slack [36]. Recent measurements by Nosyk et al. [33] found 3.1M
(1%) of 303M domains generating Extended DNS Errors (EDE) [26],
suggesting a persistent gap between DNSSEC’s theoretical security
and practical deployment.

Overall, these studies underscore a recurring theme: DNSSEC de-
mands precise multi-party coordination, making misconfigurations
alarmingly common. Our work further examines which errors are
most common, and why they arise (§3) and proposes an automated
remedy (§4).

2.4 DNSViz
DNSViz [20] is a widely used DNS and DNSSEC diagnostic tool
that can visualize, analyze, and help debug DNS configurations.
Many administrators first encounter DNSViz through its interac-
tive web interface [20] where they can input a domain name and
view a graphical depiction of its DNS and DNSSEC status. This
visualization highlights each step in the trust chain and flags any
misconfigurations or validation failures.

DNSViz Command-Line Tool. Beyond the web interface, DNSViz
also provides a command-line utility that underpins much of its
functionality. This utility offers two primary commands that gather
DNS data and then interpret it:

• probe: Systematically queries all the authoritative name servers
of a domain to collect its DNS and DNSSEC data (e.g., DNSKEY,
DS, and RRSIG records).

• grok: Interprets and “decodes” the raw DNS data gathered by
probe, attempting to build a complete chain of trust from the
root to the queried domain. If any link is missing or invalid, grok
flags an error and annotates precisely where in the trust chain
validation failed.

Error Codes. DNSViz assigns a rich set of error codes to describe
potential DNSSEC misconfigurations. These codes capture both
straightforward issues—such as missing or invalid signatures or
expired RRSIG records—and more complex scenarios, including
incomplete algorithm setup or delegation errors. At the time of
writing, there are over 50 unique error codes, each accompanied
by a human-readable message that clarifies the exact nature of the
problem (e.g., “The DS RRset for the zone included algorithm 5, but
no RRSIG with algorithm 5 covering the RRset was returned in the
response.”).

Category Root TLD SLD+
Total Snapshots 6,234 356,136 747,455
Unique Domains 1 4,196 319,277
w/ at least Two Snapshots 1 2,349 84,962
CD domains 0 642 (27.3%) 21,734 (25.5%)
SD domains 1 1,707 (72.7%) 63,228 (74.4%)

Table 1: Overview of the DNSViz dataset. It contains 1.1M total
snapshots spanning from 2020-03-11 to 2024-09-25. Second-
level and lower (SLD+) domains are determined using the
Public Suffix List (PSL). CD and SD domains are defined later
in §3.2.2.

Relevance to DNSSEC Management. Many operators rely on
DNSViz’s web interface for quick diagnostics. By mapping out the
DNSSEC trust chain in detail, DNSViz pinpoints the invalid records
and delegation points. However, DNSSEC errors often have inter-
dependencies; for example, an expired RRSIG on the apex of a zone
can cascade into multiple validation failures, or a malformed NSEC
record may disrupt negative responses across the trust chain.

Yet, translating DNSViz’s error messages into specific commands or
configuration updates can be challenging for administrators. An error
like expired signature may simply require re-signing the zone in
BIND, whereas a mismatch between DNSKEY and RRSIG algorithms
might necessitate a more complex key rollover process.

In this work, we first leverage DNSViz’s extensive logs to gain
insights into the prevalence and persistence of DNSSEC misconfig-
urations, revealing recurring pitfalls and highlighting opportuni-
ties for automated or semi-automated solutions. We then leverage
DNSViz’s diagnostics to automatically map error codes to actionable
fixes in BIND, streamlining the remediation process and reducing
downtime.

3 Understanding DNSSEC Debug Patterns
3.1 Dataset
We obtained the complete historical database of DNSViz from DNS-
OARC [37]. Our analysis focuses on data collected between March
2020 and September 2024, as summarized in Table 1.

Terminology and Dataset Scope. DNSViz operates under a query-
driven model: when an administrator or user analyzes a Query
Domain, DNSViz recursively traverses the domain’s DNSSEC chain
of trust, from the root down to the zone containing Query Do-
main (called Query Zone). Along the way, it queries various record
types (e.g., A, AAAA, MX) and verifies DS/DNSKEY pairs in each del-
egation. To test negative responses (e.g., NSEC or NSEC3), DNSViz
also queries random sub-labels that do not exist.

Every response—DNS data, RRSIG records, delegation details,
negative proofs—undergoes validation against DNSSEC standards,
and DNSViz assigns specific error (or warning) codes for detected
failures. In this paper, we only consider DNSSEC-related errors
that (1) can cause a validator to return SERVFAIL or (2) violate a
DNSSEC “MUST” property from relevant RFCs [6–8], excluding
advisory (“SHOULD”-level) warnings and non-DNSSEC issues.

Limitation. All analyses in the DNSViz dataset come from user-
initiated scans, which may introduce self-selection bias, as the

3

IMC ’25, October 28–31, 2025, Madison, WI, USA Md. Ishtiaq Ashiq, Olivier Hureau, Casey Deccio, and Taejoong Chung

 0

 6

 12

 18

 24

0 200k 400k 600k 800k

D
o

m
a

in
s

 (
%

)

Tranco Site Rank (bins of 10,000)

Domains in dnsviz

 10

 20

 30

 40

 50

S
ig

n
e

d
D

o
m

a
in

s
 (

%
) Signed Domains in dnsviz

 0

 5

 10

 15

M
is

c
o

n
fi

g
u

re
d

D
o

m
a

in
s

 (
%

) Misconfigured Domains in dnsviz

Figure 1: Percentage of domains from our DNSViz dataset
appearing in each Tranco 1M bin [34], including the share
of signed and misconfigured domains.

dataset might not reflect the broader DNS ecosystem. Even so,
it captures a wide range of real-world DNSSEC configurations and
offers a practical lens on how they behave in practice, especially for
domains whose administrators actively sought diagnostic insight.
While we understand that domains that never appear in DNSViz

may behave differently, the collected data should be sufficiently
representative to support the analysis presented in next sections.

DNSViz Prevalence. To assess the broader significance of this
dataset, we compare the domains appearing in DNSViz logs to
domain popularity rankings. Figure 1 highlights the percentage of
Tranco top-1M domains [34] also present in our DNSViz dataset.
Two observations stand out:
• High Coverage of Popular Domains. Among the highest-ranked
domains, 20% appear in the DNSViz logs (red line, bottom). This
indicates that well-known domains are frequently tested or mon-
itored, either by their operators or by curious users, presumably
because DNSSEC correctness is seen as especially critical for
large or high-traffic sites; the top graph supports this, showing
that DNSSEC misconfigurations are comparatively less common
among popular domains.

• Diverse Representation Among Signed Domains. The blue line
in Figure 1 (middle) shows that a substantial fraction of do-
mains that have ever been DNSSEC-signed (at least once) appear
across the entire popularity spectrum. In fact, more than 30%
of these domains—even those consistently in the lower popu-
larity bins—show up in the DNSViz logs. This finding indicates
that smaller or niche domain owners also rely on DNSViz to
troubleshoot or refine their DNSSEC configurations, suggesting
that the tool’s usage extends beyond mere curiosity. Rather, it
meets the genuine operational needs of a diverse set of domain
operators, regardless of their popularity ranking.

3.2 Validation and Category Definitions
In order to systematically examine DNSViz’s diagnostic data, we
first establish a scheme for categorizing individual snapshots (§3.2.1)
and then group domains based on how their DNSSEC statuses
evolve over time (§3.2.2). This approach allows us to distinguish
truly static configurations (e.g., consistently valid DNSSEC setups)
from those experiencing configuration changes, either intentional
(operator debugging, key rollover) or accidental (signature expiry,
missing DS record)1.

3.2.1 Snapshot Categorization. A snapshot corresponds to the state
of aQuery Domain at a specific time when DNSViz was invoked.
We classify each into one of six categories:
• sv (signed and valid). No DNSSEC errors are detected: all signa-
tures (RRSIG) are current and verifiable, and aDNSSEC-validating
resolver would successfully authenticate the domain.

• svm (signed and valid with misconfiguration). For every query to
each authoritative server, a valid authentication path up to root
can be constructed; however, there exists at least one DNSSEC
violation in the snapshot. Violations in this category typically
do not cause validation failure but depends on the validating
resolver. An example is exceeding NSEC3 iteration count [25],
which most resolvers ignore [14]2.

• sb (signed and bogus). At least one query to at least one authori-
tative server of the domain fails cryptographic validation (e.g., an
expired RRSIG). These errors produce a SERVFAIL response code,
effectively breaking DNS resolution for validating resolvers.

• is (insecure). The domain is explicitly unsigned in a valid way. For
instance, the parent zone has a confirmed proof of non-existence
(no DS record) that resolvers recognize. Thus, the zone is treated
as “plain DNS” rather than bogus.

• lm (lame). The name servers for the Query Zone do not respond
correctly or cannot be resolved, resulting in a lame delegation.
Both DNSSEC and standard DNS queries would fail.

• ic (incomplete). The NS records for the Query Zone appear only
within the zone itself but not in the parent zone. This typically dis-
rupts normal delegation, leading to inconsistent or failed lookups.
Since our analysis centers on DNSSEC status, we primarily focus

on four DNSSEC-related categories: sv, svm, sb, and is. The other
two categories, lm and ic, reflect fundamental issues with the
zone’s overall functionality rather than DNSSEC policy per se.

3.2.2 Domain Categorization. Domains can have multiple snap-
shots over time, each potentially falling into a different category. To
highlight meaningful changes, we divide domains into two broad
groups:
• Changing Domains (CD): Domains that exhibit at least two snap-
shots with different DNSSEC-related error codes or statuses. Such

1We assume that the DNS response messages DNSViz extracts
from authoritative servers of a zone are always authentic and ob-
served errors/misconfigurations are not because of a failed Man-in-
the-Middle attack.

2A minority of resolvers treat nonzero NSEC3 iteration counts
as fatal, as highlighted by Daniluk et al. [14]. However, this is
implementation-dependent [25].

4

Decoding DNSSEC Errors at Scale: An Automated DNSSEC Error Resolution Framework IMC ’25, October 28–31, 2025, Madison, WI, USA

sv (1864)

svm (5061)

sb (10668)

is (3907)

lm (156)
ic (78)

sv (9035)

svm (6352)

sb (2285)

is (3985)

lm (63)
ic (14)

First
Snapshot

Last
Snapshot

Figure 2: For domains in the CD category, comparing DNSSEC
status between the first and last snapshots recorded by
DNSViz. Note the moderate but significant fraction of do-
mains that either enable or disable DNSSEC over time.

differences indicate that something in the DNSSEC configura-
tion changed between observations, whether intentionally (e.g.,
key rollover, DS update) or unintentionally (e.g., expired signa-
tures). We analyze these domains extensively to understand how
operators fix (or fail to fix) misconfigurations.

• Stable Domains (SD): Domains whose snapshots all reside in the
same DNSSEC category throughout the dataset. The rest of the
domains with more than one snapshot are in this category as
shown in Table 1.

3.3 How Useful Is DNSViz?
DNSViz is widely recognized for identifying DNSSEC misconfigu-
rations, but the extent to which operators use it to fix errors (rather
than just diagnose them) remains unclear. To gauge its practical
impact, we examine the Changing Domains (CD) subset—domains
with at least two snapshots and at least one shift in DNSSEC error
codes.

Figure 2 illustrates how these domains transition from their first
observed snapshot to their last:
• Positive Trajectory. Among the domains initially in sb (signed
and bogus), 7,200 (67%, out of 10,668) eventually corrected their
DNSSEC errors, reaching sv (signed and valid) or svm (signed
and valid w/ misconfigurations). This indicates a meaningful
fraction of operators do act on DNSViz’s diagnostics to remedy
their zones.

• Newly Signed. Out of previously unsigned domains, 2,400 (62%,
out of 3907) proceeded to enable DNSSEC by their final snap-
shot, suggesting DNSViz might also be used to guide the initial
deployment of zone signing.

On the other hand, DNSViz logs reveal reverse trends as well: about
650 domains (9.4%, out of 6,925) that began in a valid state (sv or
svm) reverted to insecure (no DS records), and 588 (8.4%, out of
6,925) transitioned to sb (bogus) by their last snapshot. We analyze

Previous State Transitioned State Cause # of Domains

sv sb

Total 4,064
NS Update 272 (6.7%)
Key Rollover 1,836 (45.2%)
Algo. Rollover 1,230 (30.3%)

sv is

Total 804
NS Update 56 (7%)
Key Rollover 241 (30%)
Algo. Rollover 145 (18%)

Table 2: Causes of negative transitions from a valid (sv)
DNSSEC state to either bogus (sb) or insecure (is). Key
rollovers and algorithm changes together account for
roughly two-thirds of sv → sb transitions, while a smaller
fraction stems from nameserver (NS) updates. We observe a
similar pattern for sv→ is transitions as well.

these cases more closely in §3.4 to explore the potential reasons
(e.g., key rollover mishaps, expired signatures, or explicit DNSSEC
deactivation).

Overall, Figure 2 confirms that the dataset is quite invaluable in
understanding the evolution of DNSSEC configuration on a large
scale.

3.4 Exploring Negative Transitions
While many domains improve their DNSSEC configurations over
time, a notable fraction transition from an sv (signed and valid)
state to sb (signed and bogus) or is (insecure). To understand these
“negative transitions” in more depth, we manually investigated a
subset of such cases.

Key Triggers for Bogus States. Out of 4,064 instances where a
domain shifted from sv to sb in any two consecutive snapshots, we
identify three potential causes:
(1) Nameserver (NS) Updates. Operators sometimes switch their

authoritative servers (e.g., migrating to a new DNS operator). In
doing so, they occasionally reuse old zone files to sign the zone
or forget to upload new DS records at the registrar, resulting in
invalid RRSIG or mismatched DS entries. To determine this, we
looked into the NS record of the Query Zone for each snapshot
and counted the number of times a shift to bogus state coin-
cides with a change in NS record. For instance, apopo.website
maintained sv status for 28 snapshots but switched to a new
nameserver on the 29th, accidentally resigning the zone with
stale DNS content. That single oversight triggered an invalid
RRSIG error, dropping the domain to sb.

(2) Key Rollovers. Regularly updating cryptographic keys helps pre-
vent key compromise and protects the integrity of the “chain
of trust”. However, if administrators fail to synchronize DS

and DNSKEYs updates properly, a zone can briefly or indefi-
nitely become bogus. To identify negative transitions due to
key rollover, we examined the DNSKEY record of theQuery Zone
for each snapshot and counted how often a shift to sb coin-
cided with a DNSKEY change. For example, ciast.edu.my had
a valid DNSSEC configuration with one KSK and one ZSK, but an
attempted ZSK rollover introduced four additional DNSKEYs, re-
sulting in an inconsistent key set and a misconfigured DNSSEC

5

IMC ’25, October 28–31, 2025, Madison, WI, USA Md. Ishtiaq Ashiq, Olivier Hureau, Casey Deccio, and Taejoong Chung

Category Subcategory # of snapshots (%) # of domains (%)

Delegation ⑤ Missing KSK for Algorithm 63,004 (8.4%) 25,102 (7.9%)
① Invalid Digest 1,103 (0.15%) 466 (0.15%)

Key
③ Inconsistent DNSKEY b/w Servers 19,330 (2.6%) 6,393 (2%)

Revoked Key 302 (0.04%) 45 (0.014%)
Bad Key Length 108 (0.01%) 21 (0.007%)

Algorithm ② Incomplete Algorithm Setup 6,859 (0.9%) 1,883 (0.5%)

Signature

Missing Signature 38,662 (5.2%) 18,306 (5.7%)
④ Expired Signature 11,670 (1.6%) 4,494 (1.4%)
⑥ Invalid Signature 10,336 (1.4%) 3,152 (1%)
Incorrect Signer 1,961 (0.3%) 550 (0.2%)

Not Yet Valid Signature 663 (0.09%) 125 (0.04%)
Incorrect Signature Labels 99 (0.01%) 25 (0.008%)
Bad Signature Length 42 (0.006%) 13 (0.004%)

TTL ⑧ Original TTL Exceeds RRSet TTL 4,999 (0.7%) 1,769 (0.6%)
TTL Beyond Expiration 2,556 (0.3%) 864 (0.3%)

NSEC(3)
⑦ Missing Non-existence Proof 65,378 (8.7%) 17,768 (5.6%)

Incorrect Type Bitmap 18,218 (2.4%) 4,070 (1.3%)
Bad Non-existence Proof 9,678 (1.3%) 3,255 (1%)

NSEC(Only) Incorrect Last NSEC 405 (0.05%) 214 (0.07%)

NSEC3(Only)

⑨ Nonzero Iteration Count (NZIC) 215,036 (28.8%) 62,870 (19.7%)
Inconsistent Ancestor for NXDOMAIN 2,296 (0.3%) 1,410 (0.44%)
Incorrect Closest Encloser Proof 1,278 (0.17%) 415 (0.13%)

Invalid NSEC3 Hash 456 (0.06%) 200 (0.06%)
Invalid NSEC3 Owner Name 301 (0.04%) 152 (0.05%)

Incorrect Opt-out Flag 186 (0.02%) 64 (0.02%)
Unsupported NSEC3 Algorithm 74 (0.01%) 11 (0.003%)

- w/ at least One DNSSEC Error 296,813 (39.7%) 81,805 (25.6%)
Table 3: Prevalence of various DNSSEC error types in our DNSViz dataset, covering 319,277 second-level and their lower-level
domains (total 747,455 snapshots); for example, the “Nonzero Iteration Count” in NSEC3 appears in 215,036 snapshots (28.8%)
spanning 62,870 domains (19.7%). The markers (①–⑨) highlight notable or especially frequent misconfigurations in each
category, which are also presented in Figure 4. Last row represents the # of snapshots (and domains) with at least 1 error from
above categories.

setup. This is a common mistake during rollovers, as reported
in [30].

(3) Key Algorithm Rollovers.Amore complex type of rollover where
the algorithm associated with the DNSKEY record (e.g., from RSA
to ECDSA) is changed as well, not just the key itself [27].
Operators can do this to switch to a more secure and/or shorter
key and signatures or use multiple algorithms simultaneously
to prevent validation failure due to unsupported algorithms.
However, given DNSSEC algorithm rollover is a complicated
process [38], this creates more window to break DNSSEC vali-
dation.
To identify whether any of the transitions to bogus state was
caused by this, we looked into the DNSKEY algorithms of the
Query Zone for each snapshot and counted the number of times
a shift in state coincides with an update in DNSKEY algorithm.
Out of 4,064 such transitions, we observed a key algorithm
change in 1,230 (30.3%) instances.

Collectively, these three categories account for 81% of the observed
negative transitions (see Table 2).

Switching to Insecure. Similarly, we identified 7% of cases where
valid domains transitioned to is following nameserver updates,
while in 30% and 18% cases, domains removed their DS record and
turned off DNSSEC following key rollover and algorithm rollover

respectively. Moreover, we found 610 domains that first became
bogus from valid and then disabled DNSSEC permanently as per
their latest snapshot. Although we cannot confirm the exact admin-
istrative intentions, these patterns highlight usability challenges
and point to potential mismanagement during server migrations or
key transitions.

3.5 Error Prevalence in DNSSEC
To identify which DNSSEC issues arise most frequently, we examine
47 distinct DNSViz error codes spanning our entire dataset. Table 3
groups them under 8 parent categories (e.g., “Delegation,” “Key,”
“Signature,” etc.) and 26 subcategories to facilitate broader analysis.

• NSEC/NSEC3 Errors. NSEC and NSEC3 issues are the single most
prominent category. In particular, the “Nonzero Iteration Count”
code appears in 215,036 snapshots (covering 62,870 domains)—by
far the largest single error. Another 65,378 snapshots (17,768 do-
mains) exhibit a “Missing Non-existence Proof” error, indicating
that negative responses (NXDOMAIN, NODATA) lack the appropriate
NSEC/NSEC3 records. These two alone underscore that negative-
proof mechanics remain a persistent challenge for administrators.

• Delegation Errors. Errors in establishing a valid chain of trust
also loom large. For instance, having a “Missing KSK for Algo-
rithm” (i.e., a DS record referencing a key algorithm not actually

6

Decoding DNSSEC Errors at Scale: An Automated DNSSEC Error Resolution Framework IMC ’25, October 28–31, 2025, Madison, WI, USA

 0

 10

 20

 30

N
SEC

(O
nly)

TTL
K
ey

A
lgorithm

Signature

D
elegation

N
SEC

(3)

N
SEC

3(O
nly)

%
 o

f
E

r
r
o

r
s

Figure 3: Percentage of DNSSEC error categories out of
747,455 snapshots for second-level and lower domains.
NSEC(3)-related errors, including nonzero iteration counts
and missing negative proofs, account for a significant frac-
tion. We also see many delegation failures and signature
(RRSIG) issues.

present) appears in 63,004 snapshots and affects 25,102 domains.
Meanwhile, “Invalid Digest” (a DS record whose hash does not
match any DNSKEY) occurs in 1,103 snapshots across 466 domains.
Although smaller in absolute terms, such mismatches directly
trigger SERVFAIL and are often among the most critical to fix.

• Signature Anomalies. Signature-related issues are widespread:
“Missing Signature” arises in 38,662 snapshots (18,306 domains),
while “Expired Signature” affects 11,670 snapshots (4,494 do-
mains), and “Invalid Signature” appears 10,336 times (3,152 do-
mains). Collectively, these reflect a broad set of operational lapses,
from forgetting to re-sign the zone before signatures expire to
incorrectly applying the private key.

• Key-Related Inconsistencies. Among the errors in the “Key” cate-
gory, the most common is having inconsistent DNSKEY sets across
different authoritative servers (19,330 snapshots, 6,393 domains).
Although less prevalent than major NSEC (3) or signature issues,
this inconsistency can break validation and lead to intermittent
SERVFAIL. Other key-level errors (e.g., “Bad Key Length,” “Re-
voked Key”) are relatively rare but still appear in hundreds of
snapshots.

• Algorithmic Gaps. A noteworthy 6,859 snapshots (1,883 domains)
exhibit “Incomplete Algorithm Setup,” where an algorithm refer-
enced by the zone is not consistently present in all RRSIG records
or does not align with the parent zone’s DS records. This often
arises when an operator attempts to upgrade or change algo-
rithms but omits essential steps (e.g., forgets to sign the zone
with all unique algorithms present in the zone [39]).
Figure 3 provides a visual summary, highlighting the dispropor-

tionate frequency of NSEC3 iteration count violations and missing
RRSIG sets. These findings suggest that some DNSSEC intricacies
such as negative proof management remain persistent trouble spots.

3.6 Understanding Error Resolution Patterns
While identifying the kinds of DNSSEC errors is useful, understand-
ing how quickly they are addressed is equally crucial. Table 4 shows
the number of transitions in the CD set between any two consecu-
tive snapshots and median time for these transitions. As we can see,

From \ To sv svm sb is

sv – 1310
34.2h

4064
133.7h

804
58.6h

svm
3132
73.4h – 5573

104.2h
1486
71.8h

sb
8052
0.7h

8065
0.87h – 3922

1.6h

is
2150
2.7h

2097
3.3h

2001
1.8h –

Table 4: Adjacencymatrix of state transitions. Each cell shows
of transitions (top) and median time in hours (bottom). A
dash (–) means no observed transition. We can observe ad-
ministrators reacting promptly when their domain becomes
bogus.

transition from bogus to valid has a median time of only 0.7 hours.
We further identified 1,856 domains (out of 4,064) that transitioned
from a valid to a bogus state and subsequently recovered (back
to valid). For this subset, the median time for the valid to bogus
transition is 238.6 hours, whereas the median for bogus to valid is
0.6 hours. This clearly indicates that administrators tend to respond
much more promptly to errors that cause resolution failures.

To further understand which individual error code is easier to fix
or needs quick operator attention, we now focus only on domains
that eventually corrected their DNSSEC status, transitioning from
sb or svm to sv. For each error code with at least 100 fix instances,
we define two timestamps:
• 𝑡1: The first snapshot with sb (signed-bogus) or svm

(signed-valid w/ misconfig) category where the error is present.
If this snapshot is sb, the error is deemed critical (leading to
SERVFAIL); under svm, it is non-critical.

• 𝑡2: The first snapshot in which the error is no longer detected
and the domain is fully valid (sv).

We compute the time difference between snapshots 𝑡1 and 𝑡2 for
each instance and plot the distributions in Figure 4. We note two
limitations:

Overestimation in fix time. Since DNSViz rescans are triggered
by users, a domain might fix an error shortly after 𝑡1 yet go un-
recorded until the next user-initiated scan. Hence, we could over-
estimate problem durations (or miss short-lived fixes that revert).
Nevertheless, as shown in Figure 5, 65% of the domains have a
median time difference of less than a day between their consecutive
two snapshots which suggests that these scanning gaps are not
very common, so the overall trends remain informative.

Underestimation of critical errors. Some error codes in svm

category may also lead to SERVFAIL. It is impossible to identify
them deterministically without complete validation context. For
example, “Incomplete Algorithm Setup” error code may or may not
produce SERVFAIL depending on whether the validating resolver
supports one of the algorithms that can form a valid chain of trust up
to root. Therefore, our estimation of critical errors may potentially
be an underestimation of actual number of critical errors.

Regardless of the caveats, we make the following useful obser-
vations from this analysis:

7

IMC ’25, October 28–31, 2025, Madison, WI, USA Md. Ishtiaq Ashiq, Olivier Hureau, Casey Deccio, and Taejoong Chung

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

1 2 3 4 5 6 7 8 9 Dep.

H
o

u
r
s

Error Index

Figure 4: Resolution times for critical (red boxes) vs. non-
critical (orange boxes) DNSSEC errors. The numbers on the
x-axis (1–9) are indices that map directly to the numbered
error categories detailed in Table 3. Note that the median
time to deploy DNSSEC (black box) is more than a day; this
is likely attributed to the operational challenges in DNSSEC
identified by prior works [11].

 0

 0.2

 0.4

 0.6

 0.8

 1

1m 1h 1d 10d

C
D

F

Median Time between Snapshots

Figure 5: 65% of the domains have a median time difference
of less than a day between their consecutive two snapshots

• Critical Errors Are Fixed Sooner. Delegation problems such as
DS and DNSKEY mismatches that break trust chains are often
resolved within 2–3 days in 80% of cases. Similarly, in 80% cases,
inconsistent DNSKEY sets take about four days while expired or
invalid signatures take a bit longer (10 days). This is somewhat
surprising, since re-signing can be automated, suggesting that
some operators may still use manual signing procedure.

• Non-Blocking Errors Are Overlooked. Errors typically not caus-
ing SERVFAIL—such as TTL mismatch with Original TTL field
in RRSIG record or a nonzero NSEC iteration count—persist for
weeks or months (60 and 250 days, respectively, in 80% of oc-
currences). Because they do not break resolution, administrators
often de-prioritize them indefinitely.
Finally, Table 5 shows a large fraction of domains never remedied

their DNSSEC errors during our observation period. Roughly 18%
of domains once in sb remained in that status, and 36.5% of those
that once turned off DNSSEC (i.e., reverted to is) never re-enabled
signing. These persistent shortcomings highlight the operational
complexities of DNSSEC and the tendency for domains to abandon
signing when errors become unmanageable.

Implications. Overall, despite DNSViz’s thorough diagnostics, the
path from “error found” to “error fixed” often remains lengthy

Category
of Domains

w/ at least Not ResolvedOne Snapshot
sb (signed & bogus) 15,209 2,731 (18%)
svm (signed & valid w/ misconfig.) 9,052 5,603 (61.9%)
is (insecure) 7,149 2,611 (36.5%)

Table 5: For each DNSSEC state of interest, we list (i) the total
number of domains that appear in that state at least once,
and (ii) how many never rectified the issue or re-enabled
DNSSEC according to their latest snapshot in our dataset.

or incomplete. Critical errors do tend to be addressed (albeit not
instantly), but non-critical issues remain in place for long durations,
and many domains drop DNSSEC altogether rather than maintain
it. This underscores the need for a more automated, domain-aware
remediation mechanism. We explore such a solution in the next
section.

4 DFixer: A Comprehensive DNSSEC Fixing
Framework

We introduce DFixer, a framework that pinpoints DNSSEC mis-
configurations and translates these diagnoses into actionable BIND
commands. Compared to purely diagnostic tools (e.g., DNSViz) or
naive Large Language Model (LLM) suggestions, DFixer provides
concrete, verifiably correct fixes for the root causes of DNSSEC
errors.

4.1 Rationale and Key Observations
The design of DFixer rests on two central insights:
(1) Common Patterns of DNSSEC Errors.Despite DNSSEC’s complex-

ity, many domains exhibit the same recurring mistakes: stale
DS records, incomplete algorithm transitions, expired RRSIG

signatures etc. Consequently, the distinct root causes are rela-
tively few, even if individual domains show multiple secondary
errors.

(2) Small Repertoire of BIND Commands. Although DNSSEC provi-
sioning can be intricate, BIND ultimately relies on a limited set
of commands (e.g., dnssec-signzone for signing the zone,
dnssec-keygen for generating keys, dnssec-dsfromkey for
generating DS records). These suffice for most scenarios if one
knows how to apply them correctly and in the right order.

Leveraging these observations, DFixer pairs real-world DNSViz

misconfiguration data with a manually curated knowledge base
of error-to-command mappings. The end goal: for each snapshot
of a domain, DFixer identifies the root cause(s), devises a minimal
remediation plan, and then presents precise commands to achieve
a valid DNSSEC state.

4.2 Why Existing Tools and Naive LLMs Fall
Short

Diagnostic-OnlyTools.Well-known utilities, such as DNSViz [20],
Zonemaster [40], DNSSECDebugger [15] excel at detectingDNSSEC
anomalies. However, they typically produce extensive lists of error

8

Decoding DNSSEC Errors at Scale: An Automated DNSSEC Error Resolution Framework IMC ’25, October 28–31, 2025, Madison, WI, USA

Start

1. DNS Data Collection and Validation

Extract
errors

Sort
topologically

Get the
topmost error

Is error
present?

dnsviz
probe

dnsviz
grok JSON

2. Error Extraction and Topological Ordering

Create
minimal

remediation
plan

Identify
root

cause

Map
plan to

commands

4. Optional Auto-Application
and Re-Verification

Yes
DResolver

End

No

3. Root Cause Analysis and Command Generation

Apply
commands?

Figure 6: Overview of the DFixer pipeline. Each iteration collects DNSSEC data with probe and grok filters relevant error codes,
resolves root causes via DResolver, and produces fix commands. The process repeats until no blocking errors remain.

messages that do not isolate the few root causes. This can over-
whelm novice administrators in understandingwhich errors directly
break the chain of trust andwhich are mere side effects. For instance,
a simple extraneous DS record can trigger over a dozen distinct
error messages. Without further guidance, operators may struggle
to fix the correct underlying issue.

Naive LLM-Based Approaches. Large Language Models (e.g.,
GPT-4o) show promise in synthesizing text, and are able to provide
highly dynamic and interactive solution. Thus, we wanted to verify
how naive LLM-based prompt engineering techniques perform
in our problem domain. As an experiment (Appendix §A.2), we
used GPT-4o to help us diagnose and fix common DNSSEC-related
problems and observed that it often:

• Produced generic suggestions (e.g., “Verify your DS record or check
whether your zone is signed with the correct key").

• Hallucinated details such as fictitious key tags, algorithms, or
flags when given partial logs or images from DNSViz.

• Missed interdependencies among multiple errors, suggesting par-
tial fixes that fail to address the root cause.

Meanwhile, existing natural-language-to-shell-command tools [5]
from NLP research fail to capture DNSSEC-specific semantics. Thus,
a carefully curated mapping from diagnosed error to BIND command
sequence remains indispensable.

Limitation. Our findings about naive LLMs should be read as il-
lustrative rather than definitive; in Appendix §A.2, the examples
show generic advice, hallucinated key tags or algorithms, and con-
fusion between parent and child issues, but they do not constitute
a comprehensive cross-model benchmark.

First, the baseline uses a single general-purpose model and a
small prompt family, without any knowledge retrieval, or fine-
tuning mechanism. Second, LLM outputs are non-deterministic and
models evolve; we did not control seeds, compare vendors, or sweep
sampling parameters, so results should not be over-generalized. Fi-
nally, several pitfalls we observe reflect intrinsic DNSSEC operational
complexity, including multi-phase key or algorithm rollovers, not
merely LLM shortcomings [27, 38]. As future work, we plan to

evaluate whether DFixer can be extended into an agentic AI system
to further enhance its usability.

4.3 Design and Workflow of DFixer
DFixer follows an iterative pipeline, illustrated in Figure 6. Below,
we highlight the major steps:

(1) DNS Data Collection and Validation: DFixer invokes the dnsviz
probe and dnsviz grok commands on the target domain.

(2) Error Extraction and Topological Ordering: DFixer parses the
grok JSON, isolates DNSSEC-related error codes, and constructs
a dependency graph. Many errors are cascading (e.g., a miss-
ing key can trigger numerous signature or delegation errors).
By topologically sorting these errors, DFixer ensures that it
addresses the root cause first.

(3) Root-Cause Analysis and Command Generation: A module called
DResolver first identifies the root cause from zone context i.e.,
topmost error code, presence or absence of some companion
errors, and state of the zone. For example, if the topmost error
picked is “Revoked Key”, DResolver checks whether:
• a “No secure entry point” error is also present. This indicates
that there exists a DS record that is linked to the revoked key
which needs to be purged.

• there are other valid KSK present. If yes, just removing any
associated DS record and deactivating the revoked key is fine.
Otherwise, a new KSK key pair needs to be generated along
with the deactivation of revoked key.

In this way, DResolver then synthesizes a remediation plan
with a set of instructions (e.g., “Generate a new KSK, upload
new DS, remove the incorrect DS, re-sign the zone”). Finally, it
translates each instruction in the plan to BIND commands.3 The
associated parameters for these commands are populated from
zone context.

(4) Optional Auto-Application and Re-Verification: The operator can
run DFixer in two modes:

3dnssec-keygen, dnssec-signzone, dnssec-settime,
dnssec-dsfromkey

9

IMC ’25, October 28–31, 2025, Madison, WI, USA Md. Ishtiaq Ashiq, Olivier Hureau, Casey Deccio, and Taejoong Chung

• Suggest Only (dry-run):DFixer prints out the exact commands
(with placeholders for key file or zone file paths).

• Auto-Apply: If the operator grants the necessary privileges
(e.g., shell access) and local data paths, DFixer can directly
execute these commands (except the ones that require manual
interaction), re-running probe and grok after each fix.

This iterative re-verification continues until no DNSSEC errors
remain. Figure 8 in Appendix shows a sample fix plan for a domain
when its only KSK has the REVOKED flag on and is linked to a DS
record.

4.4 System Model and Assumptions
In parallel with these pipeline stages, DFixermakes certain assump-
tions about the operator and environment.

Actor and Capabilities. We assume a DNS operator with rwx

privileges on an authoritative server (running BIND). This operator
has basic DNSSEC knowledge (record types, signing logic) and
wants an automated solution to pinpoint errors and fix them.

Objectives. DFixer aims for:
• Correctness: Precisely identify root causes and map them to valid
BIND commands.

• Comprehensiveness: Cover a broad range of DNSSEC failures,
from stale DS records to incorrect algorithm rollovers.

• Extensibility: Although focused on BIND, our approach can be
adapted for other servers like NSD or PowerDNS by creating anal-
ogous error-to-command mappings, which will be shown in §5.6.

4.5 ZReplicator: Replicating Real Errors in a
Local Environment

Although DNSViz data reveals myriad real DNSSEC errors, DFixer
cannot directly correct zones owned by third parties. To fully vali-
date whether DFixer’s recommended fixes actually work, we devel-
oped ZReplicator, a custom local replication module.

Motivation.We want to recreate real-world DNSSEC errors in a
sandbox where we can:
(1) Inject the exact misconfigurations (e.g., stale DS, invalid signa-

tures) from DNSViz logs.
(2) Run DFixer, apply suggested commands, and confirm that the

zone becomes valid after re-checking.
This offers a true “test-fix-verify” cycle, unlike passively analyzing
logs.

Replication Process. ZReplicator proceeds as follows:
(1) Create a Base Zone: We first set up a fully signed BIND zone

(e.g., a.com) to serve as the root for our local environment.
This enables us to automate communication with parent zone
(upload DS record) during evaluation.

(2) Emulate Parent and Child Zones: We create sub-zones (e.g.,
par.a.com and inv-chd.par.a.com) mirroring the param-
eters (# of DNSKEY records and their flags, algorithms, and key
size, # of DS records, and their digest type, usage of NSEC vs.
NSEC3, etc.) extracted from the real domain’s DNSViz logs.

dnsviz
dataset

Identify
target
zone

Is error
present?

Filter
DNSSEC

errors

Pick a
JSON

Extract
meta

parameters

Zone
Replicator

Extract
errors

DFixer

Compute
RR

Compute
FR

Yes

End
No

1. Select JSON

2. Parse JSON

3. Replicate Zone

4. Apply Fix

5. Evaluate

Figure 7: High-level illustration of our evaluation pipeline.
Each JSON file from the DNSViz dataset is parsed, replicated
locally via ZReplicator, and then processed by DFixer.

(3) Inject DNSSEC Errors: By tweaking the zone files (e.g., setting
an RRSIG expiration in the past, removing a DNSKEY on one
nameserver), we replicate the target error scenario. This can also
include multi-server inconsistencies or algorithm mismatches.

This local replication ensures we can empirically verify DFixer’s ef-
fectiveness and correctness. In §5, we detail howwe use ZReplicator
to rigorously evaluate DFixer across thousands of misconfiguration
scenarios extracted from DNSViz logs.

5 DFixer: Evaluation
We now present a comprehensive evaluation of DFixer, leveraging
the large-scale DNSViz dataset described in §3.1. Our primary goals
are to assess whether DFixer (1) accurately reproduces real-world
DNSSEC errors through the ZReplicator module (§4.5), and (2)
effectively fixes these replicated misconfigurations in an automated
manner.

5.1 Evaluation Pipeline
As summarized in Table 1, our DNSViz dataset comprises 747K
snapshots (JSON files) for SLD and lower domains.

Figure 7 illustrates our experimental pipeline, which proceeds
as follows:
(1) Select JSON Snapshot.We iterate over the DNSViz dataset (747K

snapshots for SLD+ domains), taking one JSON file at a time.
(2) Parse JSON. For each snapshot, we extract all DNSSEC-related

errors present in the leaf zone (“target zone”) such as invalid
RRSIG or missing DNSKEY. We also record zone meta-parameters
that are critical for accurate replication and subsequent fixes:
• DNSKEY properties: Number of keys, their algorithms, and
key sizes. These details are essential for generating correct
BIND commands (e.g., dnssec-keygen arguments) so that
we can match the zone’s actual cryptographic setup.

10

Decoding DNSSEC Errors at Scale: An Automated DNSSEC Error Resolution Framework IMC ’25, October 28–31, 2025, Madison, WI, USA

Dataset # of Snapshots 𝑮𝑬 ≠ 𝝓 𝑰𝑬 ⊆ 𝑮𝑬 & 𝑰 𝑬 ≠ 𝝓 𝑨𝑬 = 𝝓 & 𝑰 𝑬 ⊆ 𝑮𝑬 RR FR
NZIC Only (𝑆1) 168,482 166,591 166,470 166,470 98.81% 100.0%
Remaining (𝑆2) 128,331 119,362 101,003 100,998 78.71% 99.99%

Total 296,813 285,953 267,473 267,468 90.11% 99.99%
Table 6: Performance of ZReplicator and DFixer among the snapshots with IE ≠ ∅.

• Delegation settings: Parent-zone data, such as DS record digest
types and algorithms, needed for consistent DS creation or
removal.

• NSEC vs. NSEC3 usage:Whether the zone uses NSEC or NSEC3
(and if NSEC3, value of iteration count, salt, and flags). This
information ensures that commands like dnssec-signzone
reflect the same negative-proof mechanism as in the original
zone.

(3) Replicate Zone via ZReplicator.We feed the extracted error codes
and zone parameters to our ZReplicator module, which locally
reproduces the misconfigurations using two authoritative BIND
name servers to mimic multi-server inconsistencies.

(4) Apply DFixer. DFixer runs on the replicated zone, iteratively
applying fixes.

(5) Evaluate. Finally, we re-invoke probe/grok on both the repli-
cated (pre-fix) and rectified (post-fix) zones to verify: (1) whether
ZReplicator successfully replicated the original errors, and (2)
whether DFixer’s recommended commands eliminated those
errors.

5.2 Evaluation Metrics
We first define three sets of error codes:

• Intended Errors (IE): Set of DNSSEC errors present in the target
zone

• Generated Errors (GE): Set of DNSSEC errors present in the corre-
sponding replicated zone by ZReplicator

• After-fix Errors (AE): Set of DNSSEC errors present after applying
DFixer on the replicated zone

Given the above sets, we define two core metrics:

• Replication Rate (RR). We measure how often ZReplicator suc-
cessfully reproduces all intended errors from the original snap-
shot4.

RR =
of cases where IE ⊆ GE and IE ≠ 𝜙

of JSON where IE ≠ 𝜙

A higher RR implies comprehensive coverage of real-world mis-
configurations.

4In certain cases, ZReplicator may produce benign companion
errors alongside the errors in 𝐼𝐸 that does not have any bearing in
DFixer’s corrective instructions. For instance, to simulate a “Missing
KSK for algorithm” error, ZReplicator creates a DS record referenc-
ing a non-existent key with an algorithm ‘a’ that is not present in
the zone, rather than precisely matching the algorithm found in the
DS record of the target zone. This can trigger “Missing Signature
for Algorithm” error when no signatures for ‘a’ exist.

• Fix Rate (FR). We also measure how often DFixer eliminates all
generated errors in the replicated zone:

FR =
of cases where IE ⊆ GE and GE ≠ 𝜙 and AE = 𝜙

of cases where IE ⊆ GE and GE ≠ 𝜙

A higher FR indicates that DFixer’s prescribed commands are
both accurate and complete for the replicated scenarios.

5.3 Implementation and Environment:
We implement the entire pipeline inside Docker containers running
Ubuntu 22.04. Each container hosts two BIND (v9.18) instances to
emulate multi-server authoritative zones. We run these containers
on a server with 38 CPU cores and 187 GB of RAM, processing 747K
DNSViz JSON files within 36 hours. We will open-source our con-
tainer images and orchestration scripts to encourage reproducibility
and future DNSSEC research.

5.4 Experiment Results
We evaluate DFixer using 747K snapshots for SLD and lower level
subdomains in our dataset; we summarize the result in Table 6.
Among these, 296,813 contain at least one DNSSEC-related error.
As shown in Table 3, the “Nonzero Iteration Count" (NZIC) error
is disproportionately common compared to other issues. Because
fixing NZIC is relatively straightforward (mostly involves with re-
signing the zone with zero iterations), we divide the dataset into
two subsets to give a more representative view:
• S1: Snapshots where NZIC is the only DNSSEC error.

• S2: All other snapshots, which contain either NZIC alongside
other errors or completely different errors.

Replication Rate: From the 296,813 snapshots that have at least
one DNSSEC-related error, we observe 2,058 unique error combi-
nations. Our ZReplicator module successfully replicates 90.11% of
these. In subset S1 (NZIC-only), ZReplicator achieves a near-perfect
replication ratio of 98.81%. In contrast, S2 (which excludes NZIC-
only scenarios) reflects more realistic conditions and attains a
slightly lower replication ratio of 78.71%. For the remaining 21.29% 𝑆2
snapshots where ZReplicator failed to replicate all the intended
errors (𝐼𝐸 ⊄ 𝐺𝐸), it was able to generate a subset of intended
errors (GE ⊂ IE and GE ≠ 𝜙) in 67.18% cases, while for the remain-
ing 32.82% cases, it could not generate any of the intended ones
(GE = 𝜙). We discussed the reasons behind this in §5.5.

Fix Rate: DFixer achieves an overall fix rate of 99.99% across all
snapshots, indicating that once a misconfiguration is reproduced,
DFixer effectively resolves it. Even in the more complex S2 subset,
DFixer’s fix rate remains near-perfect; for the small fraction of S2
snapshots (5) that DFixer failed to resolve, we manually inspected
them and found the parent zone to have a bogus state with DS

records but no DNSKEY. In such scenarios, parent zone operators
11

IMC ’25, October 28–31, 2025, Madison, WI, USA Md. Ishtiaq Ashiq, Olivier Hureau, Casey Deccio, and Taejoong Chung

Instruction 1𝑠𝑡 iteration 2𝑛𝑑 iteration 3𝑟𝑑 iteration 4𝑡ℎ iteration
Sign the zone 62,406 (41.67%) 13,845 (89.98%) 1,148 (62.19%) 7 (19.44%)
Remove the incorrect DS record 46,242 (30.87%) 1,319 (8.57%) 668 (36.19%) 29 (80.56%)
Upload the DS record 14,066 (9.39%) 117 (0.76%) 12 (0.65%) -
Generate a KSK 13,148 (8.78%) 83 (0.54%) - -
Synchronize the DNS authoritative server 11,391 (7.61%) - - -
Generate ZSK 1,491 (1.0%) - - -
Reduce TTL of a specific record 947 (0.63%) 1 (0.01%) - -
Remove the revoked key 82 (0.05%) 22 (0.14%) 18 (0.98%) -

Table 7: Instructions issued by DFixer during its iterative remediation process in the S2 subset (i.e., zones with more complex
DNSSEC errors). This highlights how DFixer repeatedly removes incorrect DS records, re-signs zones, or updates keys until all
misconfigurations are resolved.

must address their errors before the child zone administrators can
proceed with DFixer.

Command Distribution inDFixer:DFixer uses an iterative reme-
diation strategy, issuing multiple rounds of BIND commands until
all DNSSEC errors are resolved (Figure 6). In our experiments, we
find that no zone required more than four iterations to become fully
compliant, and most errors were cleared by the second iteration-
highlighting DFixer’s efficiency even for interdependent misconfig-
urations. Table 7 details the most frequently applied instructions in
the 𝑆2 subset (zones with non-trivial DNSSEC problems). Several
insights stand out:

• Single-Iteration vs Multi-Iteration Fix. A single iteration is suffi-
cient when all observed errors share one root cause. For example,
a zone with a revoked KSK, missing DNSKEY signature, and an
invalid DS referencing a non-existent KSK can be repaired in
one pass by 1) generating a new KSK pair, 2) re-signing with the
correct keys, 3) publishing the correct DS, 4) deactivating the bad
DNSKEY, and 5) removing the incorrect DS. In this case, a single
iteration suffices because all the observed errors share the same
underlying cause: faulty KSK setup.
On the other hand, zones with multiple independent errors typ-
ically require multiple iterations to achieve full resolution. For
example, if a zone simultaneously exhibits a nonzero NSEC3
iteration count error and an extraneous DS record, DFixer will
proceed incrementally: in the first iteration, it removes the extra-
neous DS record, and in the second, it re-signs the zone with an
NSEC3 iteration count of zero.

• Recurring Need for Zone Signing. Unsurprisingly, “Sign the zone”
dominates across iterations, accounting for 41.67% of all com-
mands in the first pass, 89.98% in the second, and 62.19% in the
third. Zone signing is inherently necessary whenever crypto-
graphic material changes (e.g., after removing or adding keys,
regenerating signatures).

• DS Record Management is Second Most Common. Removing in-
correct DS records (30.87% in the first iteration and 8.57% in the
second) is critical for fixing common misconfigurations, such as
stale or mismatched DS entries. This finding corroborates prior
work showing that nearly 30% of DNSSEC-signed domains strug-
gle with DS-related errors [10]-often because DS maintenance
must be coordinated through registrars [11].

• Rapid Convergence inMost Cases.Only a small fraction of domains
requires a third or fourth iteration, typically when administrators
must introduce a new key, retire an old one, or wait out TTLs.
Even then, themajority of these multi-iteration scenarios still rely
on the same recurring command set: DS updates, zone signing,
and key generation or removal. Once the correct sequence is
applied, the zone swiftly transitions to full compliance.

Overall, it illustrates that while DNSSEC debugging can appear
daunting, particularly given the diverse error codes, a finite set of
well-ordered, repeatable commands is sufficient to address the vast
majority of misconfigurations.

5.5 Limitations of ZReplicator and DFixer
While ZReplicator and DFixer cover a broad range of DNSSEC
errors, few constraints limit their scope:

5.5.1 ZReplicator.

• Some zone-file errors remain unreproducible: Among the 47 dis-
tinct DNSSEC error codes present in our dataset, a few could
not be consistently replicated; for example, some negative-proof
anomalies or a DNSKEY with an impossible bit length permitted
by a buggy nameserver defy replication in our local environment,
often because BIND or our signing utilities refuse to load blatantly
invalid records. However, the proportion of these errors are rel-
atively very low; in our dataset, only 2% snapshots have these
errors. Because these errors are often intermingled with other
replicable errors, they reduce the overall efficacy of ZReplicator.

• Only leaf-zone replication is supported: ZReplicator recreates a
target zone and (optionally) its immediate parent, assuming full
control of both. However, a domain may contain CNAME or DNAME
records pointing to external zones beyond an operator’s authority.
For example, if c.example.com has a CNAME to example.org,
ZReplicator treats example.org as out of scope. This design
choice ensures we faithfully replicate local errors a zone owner
can fix, without attempting to mirror unrelated external depen-
dencies.

• Algorithm-distribution constraints: We attempt to preserve the
DNSSEC algorithm usage from each original snapshot. In prac-
tice, some algorithms (e.g., DSA-NSEC3-SHA1) are no longer
supported by BIND. When encountering such algorithms, we
substitute them with available alternatives (e.g., RSASHA256,
ECDSAP256SHA256), provided they are not already in use. A

12

Decoding DNSSEC Errors at Scale: An Automated DNSSEC Error Resolution Framework IMC ’25, October 28–31, 2025, Madison, WI, USA

small fraction of zones, however, exhaust all supported algo-
rithms, making exact replication or even generation impossible.

5.5.2 DFixer.

• Requires manual update of DS records: In our evaluation of DFixer,
we were able to automate everything including interaction with
the parent zone by setting up a base zone under our control.
In real-world deployments, however, such interactions would
need to be performed manually. Although CDNSKEY and CDS [21]
records could have been used for this purpose, their adoption re-
mains very limited, so we chose not to rely on them. Additionally,
some registrars use different formats for submitting DS records;
for instance, AWS Route 53 requires uploading the public key
instead. These edge cases are not covered in our instructions, as
we follow the common patterns used by most registrars.

• Optimality not guaranteed: DFixer’s command order is derived
from a manually crafted dependency graph. While this typically
yields few-iteration fixes, it is not guaranteed to be globally mini-
mal in every scenario.

• Unreplicated errors and the evaluation gap: ZReplicator cannot
reproduce a small set of anomalies (e.g., negative proofs and
buggy-nameserver artifacts), so we could not empirically test
DFixer on those cases. Nevertheless, our DFixer implementa-
tion addresses all error codes currently defined in DNSViz. For
instance, all the unreproducible negative proof anomalies can
be resolved through a straightforward zone re-signing while a
DNSKEY with an invalid bit length can be handled by generating
a valid key, removing the invalid one, and re-signing the zone.
Based on this coverage, we argue that DFixer demonstrates a
high degree of generalizability. However, we acknowledge the
need for further empirical validation, which we plan to pursue
by integrating DFixer with live DNSViz in future work.

Overall, these limitations reflect our primary goal of assisting
domain owners in fixing zone-level DNSSEC errors. They do not
diminish DFixer’s utility for the majority of commonly observed
misconfigurations, nor do they undercut ZReplicator’s ability to
reproduce most real-world scenarios where the zone file itself is at
fault.

5.6 Testing Extensibility
Although our primary pipeline focuses on generating BIND com-
mands, we also explore DFixer’s applicability to other authoritative
server software. DNSSEC operations—such as key generation, zone
signing, and DS management—share common principles across im-
plementations, suggesting that a direct mapping from BIND-centric
commands to other server CLIs is often feasible. Below, we discuss
how our manually curated commands can be adapted to NSD and
PowerDNS.

NSD: NSD is a widely used, high-performance authoritative DNS
server [4]. To validate our approach, we manually map the BIND
commands produced by DFixer to equivalent NSD workflows using
the ldns utilities (e.g., ldns-keygen, ldns-signzone). We repli-
cate each DNSSEC error code on two NSD instances (v4.8.0) and
confirm that every replicated error could be resolved through these

mapped commands. This outcome demonstrates that our error-to-
command logic can be extended to NSD with minimal effort.

PowerDNS: PowerDNS is another open-source authoritative server
supporting multiple backends (e.g., PostgreSQL, MySQL, BIND files)
and various DNSSEC modes (live-signing, pre-signed). Its live-
signing mode generates signatures on the fly, which thwarted our
attempts to inject controlled misconfigurations. We therefore used
the BIND backend in pre-signed mode, replicating all misconfigu-
rations except involving NSEC or NSEC3 records due to a known
PowerDNS bug [41]. We also built a one-to-one mapping from BIND

to pdnsutil, but PowerDNS does not permit fixing errors in a
pre-signed zone via pdnsutil. Therefore, we could not validate
the effectiveness of our mapped commands in PowerDNS. As a
workaround, we used the BIND commands generated by DFixer
to fix the zone locally, then imported the repaired zone back into
PowerDNS. Using this mechanism, we confirmed that DFixer was
also able to successfully repair PowerDNS zones as well.

Knot DNS: Knot DNS is another open-source high-performance
authoritative DNS server [3]. To evaluate the potential applicability
of DFixer to Knot, we investigated the feasibility of mapping our
existing BIND commands and parameters set to Knot DNS envi-
ronment. Our analysis indicates that this mapping can be achieved
without significant difficulty. Specifically, operations such as key
generation with configurable algorithm and size, as well as key
retirement and removal, are supported through the keymgr utility.
Furthermore, parameters related to NSEC/NSEC3 handling and sig-
nature lifetime management can be configured within the policy
section of the Knot DNS configuration.

Takeaway: Any authoritative software that exposes fundamental
operations such as zone signing, key generation, key activation or
deactivation with basic parameter customization can host DFixer’s
repair plan with a thin translation layer.

6 Conclusion
Our large-scale analysis of DNSViz logs reveals a pronounced gap
between DNSSEC’s theoretical security and its operational reality.
We address this gap with DFixer, which resolves DNSViz-reported
errors to specific BIND commands. In local replication tests using an
internally developed tool ZReplicator, DFixer succeeds in quickly
repairing misconfigurations that might otherwise cause persistent
failures. While certain limitations remain in ZReplicator, DFixer
performance highlights how automated, domain-specific tooling
can significantly reduce DNSSEC downtime and discouragement.
By focusing on actionable fixes rather than mere diagnostics, we
hope to advance DNSSEC adoption and strengthen global DNS
security.

Acknowledgments
We thank anonymous reviewers and our shepherd for their helpful
comments. This research was supported in part by NSF grant CNS-
2339378 and Comcast Innovation Fund.

13

IMC ’25, October 28–31, 2025, Madison, WI, USA Md. Ishtiaq Ashiq, Olivier Hureau, Casey Deccio, and Taejoong Chung

References
[1] DNSSEC SCOREBOARD. https://www.verisign.com/en_US/

company-information/verisign-labs/internet-security-
tools/dnssec-scoreboard/index.xhtml.

[2] Internet Society. https://www.internetsociety.org/.
[3] KnotDNS. https://www.knot-dns.cz/.
[4] NSD. https://www.nlnetlabs.nl/projects/nsd/about/.
[5] Shell-AI: let AI write your shell commands. https://

github.com/ricklamers/shell-ai.
[6] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. DNS

Security Introduction and Requirements. RFC 4033, IETF, 2005.
http://www.ietf .org/rfc/rfc4033.txt.

[7] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. Pro-
tocol Modifications for the DNS Security Extensions. RFC
4035, IETF, 2005. http://www.ietf .org/rfc/rfc4035.txt.

[8] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. Re-
source Records for the DNS Security Extensions. RFC 4034,
IETF, 2005. http://www.ietf .org/rfc/rfc4034.txt.

[9] M. Brown. Calling time on DNSSEC: The costs exceed the
benefits. 2023. https://www.mattb.nz/w/2023/06/02/calling-
time-on-dnssec/.

[10] T. Chung, R. van Rijswijk-Deij, B. Chandrasekaran, D.
Choffnes, D. Levin, B. M. Maggs, A. Mislove, and C. Wilson.
A Longitudinal, End-to-End View of the DNSSEC Ecosystem.
USENIX Security, 2017.

[11] T. Chung, R. van Rijswijk-Deij, D. Choffnes, A. Mislove, C.
Wilson, D. Levin, and B. M. Maggs. Understanding the Role
of Registrars in DNSSEC Deployment. IMC, 2017.

[12] Cloudflare. http://www.cloudflare.com.
[13] C. Deccio, J. Sedayao, K. Kant, and P. Mohapatra. Quantifying

and Improving DNSSEC Availability. 2011 Proceedings of 20th
International Conference on Computer Communications and
Networks (ICCCN), 2011.

[14] C. A. Daniluk, Y. Nosyk, A. Duda, and M. Korczynski. Zeros
Are Heroes: NSEC3 Parameter Settings in the Wild. IMC, 2024.

[15] DNSSEC Debugger. http://dnssec-debugger.verisignlabs.com.
[16] DNSSEC Deployment Report. https://rick.eng.br/dnssecstat/.
[17] DNSSEC Statistics. https://www.internetsociety.org/

deploy360/dnssec/statistics/.
[18] DNSSEC chain validation issue: technical incident re-

port. https://internetnz.nz/news-and-articles/dnssec-chain-
validation-issue-technical-incident-report/.

[19] DNSSEC issues take Fiji domains offline. https://
blog.cloudflare.com/dnssec-issues-fiji/.

[20] DNSViz. http://dnsviz.net.
[21] A. Eden. Announcing CDS/CDNSKEY Support. 2019. https:

//blog.dnsimple.com/2019/02/cds_cdnskey/.
[22] D. Eastlake. Domain Name System Security Extensions. IETF

RFC 2535, IETF, 1999.
[23] G. Huston. Measuring the use of DNSSEC. 2023. https:

//blog.apnic.net/2023/09/18/measuring-the-use-of-dnssec/.
[24] G. Huston. Calling time on DNSSEC? 2024. https://

blog.apnic.net/2024/05/28/calling-time-on-dnssec/.
[25] W. Hardaker and V. Dukhovni. Guidance for NSEC3 Parameter

Settings. RFC 9276, 9276, RFC Editor, 2022.
[26] W. Kumari, E. Hunt, R. Arends, W. Hardaker, and D. C.

Lawrence. Extended DNS Errors. RFC 8914, RFC Editor, 2020.
[27] Key Management, DNSSEC Guide : Chapter 6. Advanced

Discussions. https://dnsinstitute.com/documentation/dnssec-
guide/ch06s04.html.

[28] B. Laurie, G. Sisson, R. Arends, and D. Blacka. DNS Security
(DNSSEC) Hashed Authenticated Denial of Existence. RFC

5155, IETF, 2008.
[29] E. Lewis. Where did DNSSEC go wrong? https://

blog.apnic.net/2024/07/05/where-did-dnssec-go-wrong/.
[30] H. Lee, M. I. Ashiq, M. Muller, R. van Rijswijk-Deij, T. Kwon,

and T. Chung. Under the Hood of DANE Mismanagement in
SMTP. USENIX Security, 2022.

[31] M. Müller, M. Thomas, D. Wessels, W. Hardaker, T. Chung, W.
Toorop, and R. van Rijswijk-Deij. Roll, Roll, Roll your Root: A
Comprehensive Analysis of the First Ever DNSSEC Root KSK
Rollover. IMC, 2019.

[32] M. Müller, W. Toorop, T. Chung, J. Janssen, and R. van Rijswijk-
Deij. The Reality of Algorithm Agility: Studying the DNSSEC
Algorithm Life-Cycle. IMC, 2020.

[33] Y. Nosyk, M. Korczyński, and A. Duda. Extended DNS Errors:
Unlocking the Full Potential of DNS Troubleshooting. IMC,
2023.

[34] V. L. Pochat, T. V. Goethem, S. Tajalizadehkhoob, M. Kor-
czyński, and W. Joosen. TRANCO: A Research-Oriented Top
Sites Ranking Hardened Against Manipulation. NDSS, 2019.

[35] S. Roth, R. van Rijswijk-Deij, and T. Chung. Tracking Registrar
Support for DNSSEC: It’s Slowly Getting Better. IMC, 2019.

[36] The Case of the Recursive Resolvers: What Happened Dur-
ing Slack’s DNSSEC Rollout. https://slack.engineering/what-
happened-during-slacks-dnssec-rollout/.

[37] The DNS Operations, Analysis, and Research Center (DNS-
OARC). https://www.dns-oarc.net/oarc/programme.

[38] P. Wouters, O. Sury, and I. S. Consortium. Algorithm Imple-
mentation Requirements and Usage Guidance for DNSSEC.
IETF, 2019.

[39] S. Weiler and D. Blacka. Clarifications and Implementation
Notes for DNS Security (DNSSEC). RFC 6840, IETF Request
for Comments 6840, IETF, Feb. 2013.

[40] Zonemaster. https://zonemaster.net/en/run-test.
[41] zone2sql and load-zone are not suitable for presigned zones;

set-presigned is a useless button. https://github.com/
PowerDNS/pdns/issues/8892.

14

https://www.verisign.com/en_US/company-information/verisign-labs/internet-security-tools/dnssec-scoreboard/index.xhtml
https://www.verisign.com/en_US/company-information/verisign-labs/internet-security-tools/dnssec-scoreboard/index.xhtml
https://www.verisign.com/en_US/company-information/verisign-labs/internet-security-tools/dnssec-scoreboard/index.xhtml
https://www.internetsociety.org/
https://www.knot-dns.cz/
https://www.nlnetlabs.nl/projects/nsd/about/
https://github.com/ricklamers/shell-ai
https://github.com/ricklamers/shell-ai
http://www.ietf.org/rfc/rfc4033.txt
http://www.ietf.org/rfc/rfc4035.txt
http://www.ietf.org/rfc/rfc4034.txt
https://www.mattb.nz/w/2023/06/02/calling-time-on-dnssec/
https://www.mattb.nz/w/2023/06/02/calling-time-on-dnssec/
http://www.cloudflare.com
http://dnssec-debugger.verisignlabs.com
https://rick.eng.br/dnssecstat/
https://www.internetsociety.org/deploy360/dnssec/statistics/
https://www.internetsociety.org/deploy360/dnssec/statistics/
https://internetnz.nz/news-and-articles/dnssec-chain-validation-issue-technical-incident-report/
https://internetnz.nz/news-and-articles/dnssec-chain-validation-issue-technical-incident-report/
https://blog.cloudflare.com/dnssec-issues-fiji/
https://blog.cloudflare.com/dnssec-issues-fiji/
http://dnsviz.net
https://blog.dnsimple.com/2019/02/cds_cdnskey/
https://blog.dnsimple.com/2019/02/cds_cdnskey/
https://blog.apnic.net/2023/09/18/measuring-the-use-of-dnssec/
https://blog.apnic.net/2023/09/18/measuring-the-use-of-dnssec/
https://blog.apnic.net/2024/05/28/calling-time-on-dnssec/
https://blog.apnic.net/2024/05/28/calling-time-on-dnssec/
https://dnsinstitute.com/documentation/dnssec-guide/ch06s04.html
https://dnsinstitute.com/documentation/dnssec-guide/ch06s04.html
https://blog.apnic.net/2024/07/05/where-did-dnssec-go-wrong/
https://blog.apnic.net/2024/07/05/where-did-dnssec-go-wrong/
https://slack.engineering/what-happened-during-slacks-dnssec-rollout/
https://slack.engineering/what-happened-during-slacks-dnssec-rollout/
https://www.dns-oarc.net/oarc/programme
https://zonemaster.net/en/run-test
https://github.com/PowerDNS/pdns/issues/8892
https://github.com/PowerDNS/pdns/issues/8892

Decoding DNSSEC Errors at Scale: An Automated DNSSEC Error Resolution Framework IMC ’25, October 28–31, 2025, Madison, WI, USA

Description

I’m encountering issues during the process of enabling
DNSSEC for my domain. I ran a checkwith dnsviz.net
for debugging, which highlighted several configuration
errors, but the root cause of these problems is unclear
to me. I have attached the debugging analysis data and
visualization diagram from DNSViz in JSON and PNG
format respectively. I have also copied and pasted the
unique error messages from DNSViz.
<error messages>
<attachments>

Question

Given the files and messages from DNSViz, can you as-
sist me in understanding the specific points of failure,
and determining the root cause of the misconfigura-
tions? Give me the identified root cause(s) in concise
and short bullet points.

Directives

• Be as specific as possible with variable parameters
such as DNSKEY algorithms, key_tags etc. For exam-
ple, if your root cause is a DNSKEY with REVOKED
flag on, please associate the key_tag of the DNSKEY
you are referencing.

• Do not report any misconfigurations that belong to
the ancestor zones.

• If there are multiple root causes, list them in order of
importance, with the most critical issues appearing
first.

• For privacy, please do not refer to the domain name
directly.

Figure 9: Prompt format used for root cause identification

Question

For each of the identified root cause(s), please provide
specific instructions on how to resolve them.

Directives

Extract the variable parameters such as DNSKEY algo-
rithms, key_tags, NSEC or NSEC3 usage, DS digest type
etc. from the current zone file settings when possible.
For example, if I need to resign the zone, specify NSEC if
the zone is currently using NSEC and NSEC3 otherwise.

Figure 10: Prompt formats used for devising remediation
plan with commands

Root Cause: Your DS record is linked to a DNSKEY (key_tag=𝑘)
with REVOKED flag on.
Remediation Plan with BIND commands: Replace the path
variables in angle brackets with values of your own environment.
Parameters in braces and variables will be automatically populated
by DFixer.
(1) Generate a new KSK key pair. Execute: cd <key_dir> &&

dnssec-keygen -f KSK -a {algo} -b {key_size}

-n ZONE {zone}. This command should create two new key
files inside your key directory; please note the name of the
public key file (with .key extension).

(2) Generate the DS record from the generated public key file.
Replace public_key_file with the name of the public
key file from previous step and execute: cd <key_dir> &&

dnssec-dsfromkey -2 <public_key_file>. This com-
mand should show the contents of your DS record in standard
output.

(3) Upload the DS record to the parent zone. This must be done
manually via your registrar.

(4) Remove the DS record linked to the revoked DNSKEY
(key_tag=𝑘) from the parent zone. This also needs to be done
manually via your registrar.

(5) Wait at least one full TTL (𝑡𝑡𝑙) for the removed DS record to
expire from the cache of any validator. Nothing to execute; in
“auto-apply” mode, DFixer will automatically infer the TTL
and wait out this period before executing the next command.

(6) After 𝑡𝑡𝑙 seconds, delete the DNSKEY (key_tag=𝑘 , pre-revoked
key_tag=𝑝𝑘) from your zone. Replace key_file with the
name of the public key file associated with key_tag=𝑘 ,
and execute: dnssec-settime -D {current_time}

<key_dir/key_file>

(7) Re-sign the zone. Execute: cd <key_dir> && dnssec-

signzone -N INCREMENT -3 {salt} -S -o {zone}

-t <zone_dir/unsigned_zone_file>

Figure 8: Sample remediation workflow produced by DFixer
for a domain with its only KSK revoked and linked to a DS
record

A Appendix
A.1 Ethics
Our dataset only contains public DNS information for a zone and
does not have any personally identifiable information. For ZReplica-
tor, we configured our replicated zones inside a local containerized
environment, thus not facing public DNS servers. Additionally,
during our experimentation with probe utility, we ensured to not
query root and TLD servers by leveraging the -x and -a flag in
DNSViz.

15

IMC ’25, October 28–31, 2025, Madison, WI, USA Md. Ishtiaq Ashiq, Olivier Hureau, Casey Deccio, and Taejoong Chung

Absolutely! Based on the DNSViz visualization, I’ve reviewed the DNSSEC validation
chain and here’s a detailed breakdown of what’s going wrong:

🧨 🔴 Problems Identified

❌ 1. DS Record Mismatch

• The parent zone contains a DS record with:

◦ Algorithm: 13 (ECDSAP256SHA256), Key tag: 40580

• However, your zone's DNSKEY RRset does not include a key matching this DS
record. Instead, your zone is using:

▪ DNSKEY with key tag 2482 (algorithm 13) and 40745 (algorithm 13)

🔴 Result: DNS resolvers cannot verify that your DNSKEYs are trusted, because the
parent zone points to a different key than what you’re using.

❌ 2. Invalid Signatures on Zone Records

All of the RRsets under your domain (e.g., A, SOA, NS, TXT, AAAA) are signed using
the untrusted keys mentioned above. Because the DS mismatch breaks trust in your
DNSKEYs, all RRSIGs fail validation, and therefore:

• These records are treated as bogus by validating resolvers. The AD (Authenticated
Data) bit will not be set in DNS responses.

⚠ 3. Extra/Unused DNSKEY (algorithm 0)

• There is also a DNSKEY using algorithm 0 (with key tag 66427), which is
invalid for use in DNSSEC. Algorithm 0 means "reserved", and it’s not a real
signing algorithm.

🔸 Not a cause of breakage on its own, but it's a sign of a misconfigured key set or
outdated key material.

Figure 13: A hallucination example from GPT-4owhen passed
the DNSViz visualization for our invalid setup

Based on the DNSViz diagram, error messages, and extracted zone data, here are the
specific root causes for DNSSEC validation failures in your zone, written concisely and
with domain name redacted:

🔴 Root Causes (Concise & Specific)

1. No NSEC3 record covers the queried DS name

◦ Error: “No NSEC3 RR matches the SNAME”

◦ Cause: The NSEC3 record with hash
BOP2VBUG5S3T2K7G0SCPORD6JN4MD5D9 does not cover the hashed
owner name EPU4Q6F5QVO668BNN740G8CHE7UQERV3

2. NSEC3 record uses non-empty salt

◦ Salt: 8d4557157f54153f

◦ Warning: Salt should be empty to conform with [RFC 9276 §3.1]

3. DS record in parent zone uses algorithm 16 (Ed25519)

◦ But no DNSKEY in the child zone uses algorithm 16

◦ DNSKEYs present: algorithm 7 (RSASHA1-NSEC3-SHA1), key tags
35595, 53136

◦ Error: “No DNSKEY matched the DS algorithm 16”

4. No RRSIG using algorithm 16 over the DNSKEY RRset

◦ Affects DNSKEYs:

▪ alg 7, tag 35595 and alg 7, tag 53136

◦ Cause: The DS expects Ed25519 signatures, but only RSASHA1 keys exist

Figure 11: Response from GPT-4o when passed the prompt
in Figure 9 for our invalid setup

Certainly! Here's a concise summary of the steps to fix your DNSSEC issues in BIND:

✅ What’s Wrong

• DS record in parent uses alg 16 (Ed25519) — but your DNSKEYs use alg 7
(RSASHA1-NSEC3-SHA1).

• NSEC3 is used, but:

◦ Has non-empty salt (violates RFC 9276).

◦ Fails to cover the queried DS name properly.

🛠 How to Fix It (BIND-specific)

1. Replace the DS record:
dnssec-dsfromkey -2 -f zone.db Kyourzone.+007+53136.key  
→ Submit this DS to your registrar; delete the old one using alg 16.

2. Re-sign the zone with proper NSEC3:
dnssec-signzone -A -3 '' -H 0 -N increment -o yourzone
yourzone.db

3. Deploy:
mv yourzone.db.signed /var/named/yourzone.db

4. Reload the zone:
rndc reload yourzone

Let me know if you want this as a script.

Figure 12: Response from GPT-4o when passed the prompt
in Figure 10 for our invalid setup

A.2 Effectiveness of LLM-Based Approach
Although large language models (LLMs) can be helpful for trou-
bleshooting, our experiments show that prompt engineering alone
is insufficient for guiding administrators to fully correct DNSSEC
misconfigurations. To demonstrate this, we created several invalid
zones using ZReplicator, analyzed them with DNSViz, and queried
GPT-4o using the formats shown in Figure 9 and Figure 10. We
present representative results from one particularly problematic
test case here.

In this test zone, we introduced two major errors:
(1) Extraneous DS records using an algorithm for which no DNSKEY

exists.
(2) A bad non-existence proof in the parent zone, designed to test

whether the LLM can distinguish child from parent zone issues.
Figure 11 shows GPT-4o’s analysis response when

prompted per Figure 9. While the LLM correctly identified the
main problem, we observed several limitations:
(1) It did not specify which DS records were invalid.
(2) It conflated errors between the child and parent zones.
(3) It failed to rank or prioritize the issues.
(4) It presented additional warnings, contrary to our request for

concise root-cause analysis.
Figure 12 shows the model’s suggested remediation plan (follow-

ing Figure 10). Unfortunately, the guidance and commands were
partially incorrect:
(1) It advised “replacing” the DS record, even though valid one was

already in place; the correct and minimal fix was just to remove
the extraneous DS entries at the parent zone.

16

Decoding DNSSEC Errors at Scale: An Automated DNSSEC Error Resolution Framework IMC ’25, October 28–31, 2025, Madison, WI, USA

(2) It recommended re-signing the zone, which was irrelevant since
the primary issue lay in the parent’s NSEC3 records.

(3) The proposed signzone commands lacked essential parame-
ters.

Moreover, when we presented GPT-4o with a screenshot of the
DNSViz output (Figure 13), the model hallucinated specific key_tags
and algorithms, further undermining its reliability. These observa-
tions underscore that while LLMs can offer partial assistance, they
often struggle with nuanced DNSSEC errors and require additional
domain-specific logic to be truly effective.

17

	Abstract
	1 Introduction
	2 Background
	2.1 DNS and DNSSEC
	2.2 DNSSEC Status
	2.3 DNSSEC Deployment and Management
	2.4 DNSViz

	3 Understanding DNSSEC Debug Patterns
	3.1 Dataset
	3.2 Validation and Category Definitions
	3.3 How Useful Is DNSViz?
	3.4 Exploring Negative Transitions
	3.5 Error Prevalence in DNSSEC
	3.6 Understanding Error Resolution Patterns

	4 DFixer: A Comprehensive DNSSEC Fixing Framework
	4.1 Rationale and Key Observations
	4.2 Why Existing Tools and Naive LLMs Fall Short
	4.3 Design and Workflow of DFixer
	4.4 System Model and Assumptions
	4.5 ZReplicator: Replicating Real Errors in a Local Environment

	5 DFixer: Evaluation
	5.1 Evaluation Pipeline
	5.2 Evaluation Metrics
	5.3 Implementation and Environment:
	5.4 Experiment Results
	5.5 Limitations of ZReplicator and DFixer
	5.6 Testing Extensibility

	6 Conclusion
	References
	A Appendix
	A.1 Ethics
	A.2 Effectiveness of LLM-Based Approach

