Data Communication and Networks Project 4 (Bonus): Simple DNSSEC Client
CSCI-351 Fall 2019 November 12, 2019

This project is due at 11:59:59pm on December 10, 2019 and is worth 40% of your project scores. You
must complete it with a partner. You may only complete it alone or in a group of three if you have the
instructor’s explicit permission to do so for this project.

Note that there is no milestone deadline for this project.

1 Description

The Domain Name System (DNS) is a hierarchical system for converting domain names (e.g.,
www . google. com) to Internet Protocol (IP) addresses (e.g., 209.85.129.99). DNS is often referred
to as a “phone book" for the Internet, translating human-friendly domain names into machine-
friendly IP addresses.

However, DNS has long been fraught with security issues such as DNS spoofing and cache
poisoning. To solve these limitations, DNS Security Extensions (DNSSEC) were introduced nearly
two decades ago. DNS’s Security Extensions (DNSSEC) allows clients and resolvers to verify that
DNS responses have not been forged or modified in-flight. DNSSEC uses a public key infrastruc-
ture (PKI) to achieve this integrity, without which users can be subject to a wide range of attacks.
In this project, you will implement a DNSSEC client program, which handles DNS requests with
the DNSSEC option and verify if the DNS response is valid or not.

2 Background

DNSSEC provides integrity for DNS records using three primary record typeﬂ

DNSKEY records, which are public keys used in DNSSEC. Typically, each zone uses two DNSKEY
records to sign DNS records, as discussed below.

RRSIG (Resource Record Signature) records, which are cryptographic signatures of other records.
Each RRSIG is a signature over all records of a given type for a certain name; this set is called
an RRSet. For example, all Arecords for example.org will be authenticated by a single RRSIG
(i.e., the example.org A RRSIG). Each RRSIG is created using the private key that matches a
public key in DNSKEY records.

DS (Delegation Signer) records, which are essentially hashes of DNSKEYs. These records are up-
loaded to the parent zone, which establishes the chain of trust reaching up to the root zone.
The DS records in the parent zone are authenticated using RRSIGs, just like any other record

type.

Most Internet hosts do not do iterative DNS lookups themselves, but instead are configured to use
alocal DNS resolver. When a host wishes to look up a domain name, it sends a query to its resolver;

IThere are other record types for expressing the non-existence of records (NSEC and NSEC3 records) and for a child
zone to request an update to their DS record (CDNSKEY and CDS records). As these are not integral to our study, we do
not discuss them in detail.

root zone .com zone example.com zone

[RRSIG | [RRSIG | [RRSIG |
TTTTTTT root DNSKEY RRSet CoSTTTEET I .com DNSKEY RRSet I T example.com DNSKEY RRSet
E [DNSKEY] ! E [DNSKEY] ; E [DNSKEY] :
! root KSK : | .com KSK : ! example .com KSK :
| 1 1 1
| onskey] | ' [orsey] | ' [orseey 5
: root ZSK : | .com ZSK '—:— | example.com ZSK :
| I | ————— I | !
[RRSIG | [RRSIG | [RRSIG |
(CTTTTTo ‘[.com DS RRSet e example.com DS RRSet . Akl I example.com A RRSet
' [ps] ! . [Ds | ! A] ,
: com DS | E E example.com DS : E I example.com A :
! 1 ! 1 ! :

Figure 1: Overview of DNSSEC records necessary to validate example.com’s A record. Each RRSIG
is the signature of a record set (dashed lines) verified with a DNSKEY (red lines). Each DS record is
the hash of a child zone’s KSK (green lines).

the resolver then iteratively determines the authoritative name server for that domain and obtains
the record. If the resolver supports DNSSEC, it will also fetch all DNSSEC records (DNSKEYs and
RRSIGs) necessary to validate the record. Finally, the resolver returns the (validated) record back
to the requesting host. It is important to note that resolvers make heavy use of caching, and will
typically avoid re-requesting any unexpired records that have already been obtained.

DNSSEC is designed to be backwards-compatible, while enabling resolvers who support DNSSEC
to specifically request DNSSEC records. A resolver indicates that it would like DNSSEC records by
setting the DO (“DNSSEC OK") bit in its DNS request. If the responding authoritative name server
has RRSIGs corresponding to the record type of the request, it is obligated to include them. Should
the resolver also need DNSKEYs to validate the record, it may need to request them separately.

DNSSEC keys Each zone in DNSSEC typically has two public/private key pairs: one called a
Key Signing Key (KSK) and another called a Zone Signing Key (ZSK). Typically, the KSK is used
only to produce RRSIGs for DNSKEY records (hence the name). In contrast, the ZSK is used to
produce the RRSIGs for all other record types.

There is no key revocation (apart from root authorities) in the DNSSEC PKI; Rather, to mitigate
potential effects of key compromise, ZSKs are intended to be rolled over (i.e., replaced) daily or
weekly, and the KSKs monthly or yearly (the intention is that the KSK can be stored separately
from, and in a safer location than, the ZSK).

Validating a DNSSEC record The DNSSEC PKI is rooted at the KSK of the DNS root zone. This
KSK is well-known by DNSSEC-aware resolvers. Validating a DNS response starts at the root
and continues down the DNS hierarchy: A resolver begins by using the KSK to validate the root
DNSKEY RRSIG, which validates the root zone’s ZSK. The resolver can then validate the child zone’s
DS record (and thereby the child zone’s KSK) using the RRSIG for the DS records in the root zone,

as this is signed with the root zone’s ZSK. This process continues until the record in question is
authenticated. Figure|l|shows example records and how they are related.

3 Requirements

Your will write a DNSSEC client program which, given a name to query for and a DNS server to
query will:

* Construct a DNS query packet with DNSSEC option (DO bit) for the specified name
* Send the DNS queries to the specified DNS server using UDP
* Wait for the response to be returned from the server

* Interpret the responses, verify them and output the result to STDOUT
Your client must support the following features:

* Queries for A, DNSKEY, RRSIG, and DS records.

* Verify all records using crypto libraries.

You should be strict; if the returned message does not conform to the DNS specification, you
should assert an error. You may receive other packets that are not responses to your query; you
should ignore these and continue to wait for a response to your query. Remember that network-
facing code should be written defensively. We will test your code by sending corrupted packets to
your client; you should handle these errors gracefully and not crash.

Also, you need to send multiple DNSSEC-relavent queries internally to return and validate
the A records.

4 Your client program

For this project, you can choose your language. You may use any third party libraries for encryp-
tion and decryption purposes, but are not allowed to use any DNS libraries in your project (e.g.,
getaddrinfo or gethostbyname). You must construct the DNS request packet yourself, and in-
terpret the reply yourself based on your project2. Also, your code MUST work on glados. If
you used third party libraries you may need to setup your experiment environment using virutal
environment tools such as virtualenv. In such case, your runme. sh script file MUST generate your
environment as well. If your code does not compile or run on the glados server then it is your
fault.

4.1 Input and output

The command line syntax for your client is given below. The client program takes command line
argument of the domain name to interpret and the IP address of the domain server to query. The
syntax for launching your program is therefore:

./351dnsclient @<server:port> <domain-name> <record>

server (Required) The IP address of the DNS server, in a.b.c.d format.
port (Optional) The UDP port number of the DNS server. Default value: 53.
domain-name (Required) The name to query for

record (Required) The DNS record to query for, which can be either

e A:Arecords
e DNSKEY: DNSKEY records
¢ DS: DS records

After sending the request, your client should wait for a reply for 5 seconds. If no reply is heard
within this time window, you should exit indicating that a timeout occurred, by printing out the
NORESPONSE message.

To help us compare with the reference solution, your code must print out the packet to standard
output by implementing dump_packet function. For example, if you have your packet in buf and
it is size bytes, long, you should call dump_packet (buf, size) right before you call sendto().
You should see output like

[0000] 68 78 01 00 00 O1 00 OO 00 00 00 00 03 77 77 77 hx...... wWww
[0010] 06 67 6F 6F 67 6C 65 03 63 6F 6D 00 00 01 00 01 .google. com.....

Your client must then wait for a response from the server, and print the result to standard output
using the following format:

IP <tab> <IP address(es)> <tab> <RRSIG record(s)> <VALID|INVALID>

DS <tab> <DS record(s)> <tab> <RRSIG record(s)> <VALID|INVALID>

DNSKEY <tab> <DNSKEY record> <tab> <RRSIG> <VALID|INVALID>

ERROR <tab> <NONE |[MISSING-DS|MISSING-RRSIG|EXPIRED-RRSIG|INVALID-RRSIG|OTHERS>
NOTFOUND

NORESPONSE

If the response to a query contains multiple answers (such as multiple IP addresses or aliases),
your client must print an IP line for each one of these. If the requested name does not exist, your
client must print a NOTFOUND line. If no response is ever received from the server (i.e., you've
waited 5 seconds and not received anything), your client must print a NORESPONSE line. Finally, if
any other error occurs, your client should print an ERROR line containing a description of the error
either of NONE (no errors), MISSING-DS (no DS records in the parent zone), MISSING-RRSIG (no
RRSIG records for the A record, EXPIRED-RRSIG (RRSIG records are expired), INVALID-RRSIG
(The signatures in RRSIG records are invalid), and OTHERS (The other non-dnssec related errors
such as wrong format of IP addresses).

5 Extra credit (15 points)

For extra credit, you can also support queries for non-existent domain, which returns NXDOMAIN
response. Generally, you need to be able to interpret NSEC, NSEC3, or NSEC5 recordsEI to check the

2https://tools‘ietf‘org/html/rf05155

https://tools.ietf.org/html/rfc5155

signature of the NXDOMAIN response. For the extra credit, however, it is okay to assume that your
code expects only NSEC3 records. Therefore, your program should property show and validate the
NXDOMAIN response when you query the domain that does not exist as shown below;

IP <tab> <NSEC3 record(s)> <tab> <VALID|INVALID>

The below is an example of the dig application output when you request a domain name that does
not exist:

bash$ dig tijayisawesome.com A +dnssec +multiline

; <<>> DiG 9.10.6 <<>> tijayisawesome.com +dnssec +multiline

;; global options: +cmd

;; Got answer:

;5 ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 54707

;; flags: qr rd ra; QUERY: 1, ANSWER: O, AUTHORITY: 8, ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags: do; udp: 1452
;; QUESTION SECTION:
;tijayisawesome.com. IN A

;5 AUTHORITY SECTION:

com. 900 IN SOA a.gtld-servers.net. nstld.verisign-grs.com.
1542509138 ; serial
1800 ; refresh (30 minutes)
900 ; retry (15 minutes)
604800 ; expire (1 week)
86400 ; minimum (1 day)
)
com. 900 IN RRSIG SOA 8 1 900 (

20181125024538 20181118013538 37490 com.
gQV7VPcxE5018RVefpCd8b jt+AWvXDp+S0okc79yhE1x
[...]
7talLnqOpcJtaHvzYdf0QI4YuxQs+c810x1+aCl10=)
ckOpojmg8741jref7efn8430qvit8bsm.com. 86400 IN NSEC3 1 1 0 - (
CKOQ1GIN43N1ARRC90SM6QPQR8 TH5M9A
NS SOA RRSIG DNSKEY NSEC3PARAM)
ckOpojmg8741jref7efn8430qvit8bsm.com. 86400 IN RRSIG NSEC3 8 2 86400 (
20181124054257 20181117043257 37490 com.
Xwm87dpZsxrndhowMYqCtaadUDX5pHW79J j+KoMu7VmM
[...]
XEIx3+iXYaQeJS7FFJ639BuDvd4j0a99G8ZIXid=)
s1sf8qvmbqls jb3rue89e3k02qojrcqd.com. 86400 IN NSEC3 1 1 0 - (
S1SFF40N33U17031IDH2J05JSI8DT7M2U

NS DS RRSIG)
s1sf8qvm5qls jb3rue89e3k02qojrcq4.com. 86400 IN RRSIG NSEC3 8 2 86400 (
20181124060733 20181117045733 37490 com.
sjUYhzeNyRhYQiEz/ jZXW/4aPXQxMRUOghDc JDDt7Qxx
[...]
3FHqY+V3CvLbUok tdonMAM43QYnVQJMXSbEQgZM=)
3r12958205687c¢8i9kc9mv46dghcns45.com. 86400 IN NSEC3 1 1 0 - (
3RL30DP8D9109391655B97GAQU6VE1Q7
NS DS RRSIG)
3r12q58205687¢8i9kc9mv46dghcns45.com. 86400 IN RRSIG NSEC3 8 2 86400 (
20181123061045 20181116050045 37490 com.
2+z7JifBOvIQgq4otHgH8NocD8B+Qat46/X0OnLanUNkt4
[...]
Z1x+EQ0frUMfqjT2IwJQZhoru82Ke /ZWzGyhyy40=)

6 Testing

You can use the wireshark utility in order to diagnose problems with packets that you send out
(these will likely be malformatted at the beginning). Wireshark will capture packets that you send
and will let you view/explore the various fields. It will warn you about fields that are incorrect or

missing, and can guide debugging your packets.

You can use the dig utility with enabling +dnssec option in order to help diagnose problems
with interpreting responses from the DNS server that you query. To use it, see the man page, and

an example of the output is shown below:

bash$ dig example.com A +dnssec +multiline

; <<>> DiG 9.10.6 <<>> example.com A +dnssec +multiline

;5 global options: +cmd

;5 Got answer:

;5 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 13953

;; flags: qr rd ra ad; QUERY: 1, ANSWER: 2, AUTHORITY: O, ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags: dd@; udp: 1452
;; QUESTION SECTION:

;example.com. IN A

;5 ANSWER SECTION:
example.com. 10436 IN A 93.184.216.34
example.com. 10436 IN RRSIG A 8 2 86400 (

20181127161203 20181107025118 63855 example.com.

kQbz0Qi 13rqG33kNdGDbpITN8p/L1ZkheMsTU+eng1iN
[...]

AUVLOE 7kkPr 1K iBp6MOMI t gdhm2UXAHhRUGh£01=)

The explanation of each field in the RRSIG format is shown below:
* A: A type of the record of this signature.

* 8: A security algorithm number. Here the signature is generated using RSA/SHA-512 algo-
rithm 4

¢ 2: The number of labels in the original RRSIG RR owner name. In this example, we have
two labels: example and com.

* 86400: An original TTL for the covered A record.

* 20181127201150: An expiration date of this signature
* 20181106145117: An inception date of this signature
* 63855: A key tag.

* example.com.: A signer name.

* bhx...YXK=: A base64 encoding of the signature.

bash$ dig example.com DNSKEY +dnssec +multiline

;5 global options: +cmd

;; Got answer:

;5 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 35247

;; flags: qr rd ra ad; QUERY: 1, ANSWER: 5, AUTHORITY: O, ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags: do; udp: 1452
;; QUESTION SECTION:

;example.com. IN DNSKEY

;5 ANSWER SECTION:

example.com. 3334 1IN DNSKEY 257 3 8 (
AwEAAZOaquirJ6orJynrRfNpPmayJZoAx91c2/R19VQW
[...]
x j1mDNcUkF 1gpNWU1a4fWZbbaYQzA93mlLdrng+M=
) ; KSK; alg = RSASHA256 ; key id = 45620

example.com. 3334 1IN DNSKEY 257 3 8 (
AwEAADOFAx1+Lkt0UMg1ZizKEC1AxUu8z1j65KYatR5w
[...]
M+pZGhh/Yuf4RwCBgaYCi9hpiMWVvS4WBzx0/1U=

3Please note that the flags are enabled with DO (DNSSEC-OK) bit.
4The public-private key pair is generated using RSA algorithm, and the hash value (i.e., digest) is generated using
SHA-512 function.

) ; KSK; alg = RSASHA256 ; key id = 31406
example.com. 3334 1IN DNSKEY 256 3 8 (

AWEAAd31s8XH4tS6n576¢FPy97ZbtQ1£8ivP29WA41Kes

[...]

k2b /Ptuhkx2HRkZJKJyirRyHyg7vYQOgMIdNJ8D9munn

) ; ZSK; alg = RSASHA256 ; key id = 63855
example.com. 3334 IN RRSIG DNSKEY 8 2 3600 (

20181128092402 20181106205118 31406 example.com.

M63z1JKrogqEOVN/QTKCEJsNwbctCfgCz1r70A0K5Zaft

[...]

PMNOAxQAX1vktp+kJDwirlLMabOEq40uACQ==)
example.com. 3334 1IN RRSIG DNSKEY 8 2 3600 (

20181128092402 20181106205118 45620 example.com.

btfXPLtPMEL/psB+tTjd51VNFbeeX6wDI87paX1Inu2M

[...]

1uyJb5L1CJuM+10cFSovMSTnSC+JNOXxgXQ==)

The explanation of each field in the DNSKEY format is shown below:

* 257: A key type: 256 indicates a zone signing key (ZSK) and 257 indicates a key signing key
(KSK).

3: The fixed protocol value. It is always 3 for DNSSEC.

* 8: An algorithm type, which identifies the public key’s cryptographic algorithmE]

AwWEAA...Q==: A base64 encoding of the public key.

bash$ dig example.com DS +dnssec +multiline

;5 global options: +cmd

;5 Got answer:

;5 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 55102

;; flags: qr rd ra ad; QUERY: 1, ANSWER: 7, AUTHORITY: O, ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags: do; udp: 1452
;; QUESTION SECTION:

;example.com. IN DS

;5 ANSWER SECTION:

example.com. 10359 IN DS 31406 8 1 (
18996881 1E6EBA862DD6C209F 75623D8DIED9 142)
example.com. 10359 IN DS 31406 8 2 (

F78CF3344F72137235098ECBBD08947C2C9001C7F6A0
85A17F518B5D8F6B916D)

Shttps://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml.

[... 1]

example.com. 10359 IN RRSIG DS 8 2 86400 (
20181123052305 20181116041305 37490 com.
PEtWYgEZ twRfqUFCZBYBT++Zdx06W1EoW/NYBt02icY5

[... 1]
oUHW3nEQ9wMcgb 1ESsGEOC /WgX/CJ1dGXr99aaXU=)

The explanation of each field in the DS format is shown below:

* 31406: The key tag for the corresponding “example.com.”. A key tag is used to easily find
the matching DNSKEY.

* 8: The algorithm used to generate the DNSKEY for the corresponding DS record.

* 2: The algorithm used to construct the digest (i.e., hash of the DNSKEY).

7 Submitting your project

7.1 Registering your team

If you want to participate in this bonus project, you should pick out a team name (no spaces
or non-alphanumeric characters). One of team members should send me an email (the title is
[CSCI351] Registering a team) with team name, your name, your RIT ID, partner name, partner’s
RIT ID.

You must register your team by 11:59:59pm on November 19, 2019. If you do not register your team,
your submission will not be considered.

7.2 Final submission

For the final submission, you should submit your (thoroughly documented) code along with a
plain-text (no Word or PDF) README file. In this file, you should describe your high-level ap-
proach, the challenges you faced, a list of properties/features of your design that you think is
good, and an overview of how you tested your code. You MUST submit a “shell” runme . sh script
that generates the executable file 351dnsclient and the virtual environment you used (if you
used any virtual environment): you choose your language so you have to prepare it. You should
submit your project to Project4 folder in the Mycourses Dropbox. Specifically, place all of your
code and README files into one folder (Project4) and zip it (TEAMNAME.zip) and upload it to
the Dropbox.

You must submit your project by 11:59:59pm on December 10, 2019.

8 Grading
The grading in this project will consist of

70% Program functionality
15% Error handling

15% Style and documentation

You are, however, going to be graded on how gracefully you handle errors. In other words,
what will you do if you receive a corrupted response packet? Remember, network-facing code
should be graded defensively; you should always assume that everyone is trying to break your
program. To paraphrase John F. Woods, “Always code as if the [the remote machine you’re com-
municating with] will be a violent psychopath who knows where you live."

Any third party libraries usage will be considered as fail.

9 Advice
A few pointers that you may find useful while working on this project:

* Before getting your hands dirty, please fully understand how DNSSEC works by reading the
background thoroughly. The course materialﬁ] will be your friend. Also, the first 6 minutes
of this tal’| would be helpful as well.

* I STRONGLY RECOMMEND to read RFC4034EI to understand how to calculate the signa-
ture and verify it. You may use crypto libraries (e.g., pyCrypto) to check if the signature is
correct given the (1) message, (2) hash algorithm, and (3) public key. For example, if you use
pyCrypto library, you can simply call signer.verify(digest, signature) to validate the
signature

* Check the Mycourses for question and clarifications. You should post project-specific ques-
tions there first, before emailing the professor.

6https://taejoong.github.io/courses/csci—351/handouts/18—DNSSEC.key
“https://www.youtube.com/watch?v=KL j4ayIi920
8https://www.ietf.org/rfc/rfc4034.txt

9See an example: https://gist.github.com/1lkdocs/6519372

10

https://taejoong.github.io/courses/csci-351/handouts/18-DNSSEC.key
https://www.youtube.com/watch?v=KLj4ayIi920
https://gist.github.com/lkdocs/6519372

	Description
	Background
	Requirements
	Your client program
	Input and output

	Extra credit (15 points)
	Testing
	Submitting your project
	Registering your team
	Final submission

	Grading
	Advice

