
Data Communication and Networks Project 2: Simple DNS Client
CSCI-351 Fall 2019 October 10, 2019

This project is due at 11:59:59pm on October 31, 2019 and is worth 45% of your project scores. You
must complete it with a partner. You may only complete it alone or in a group of three if you have the
instructor’s explicit permission to do so for this project.

1 Description

The Domain Name System (DNS) is a hierarchical system for converting domain names (e.g.,
www.google.com) to Internet Protocol (IP) addresses (e.g., 209.85.129.99). DNS is often referred
to as a “phone book" for the Internet, translating human-friendly domain names into machine-
friendly IP addresses. In this project, you will implement a DNS client program, which handles
DNS requests by querying other machines. Note that the graduate version of this project has
additional requirements, which serve as an opportunity for extra credit for students enrolled in
the undergraduate version of this course.

2 Requirements

Your will write a DNS client program which, given a name to query for and a DNS server to query
will:

• Construct a DNS query packet for the specified name

• Send the query to the specified DNS server using UDP

• Wait for the response to be returned from the server

• Interpret the response and output the result to STDOUT

Your client must support the following features:

• Queries for A records (IP addresses)

• Responses that contain A records (IP addresses) and CNAMEs (DNS aliases)

You should be strict; if the returned message does not conform to the DNS specification, you
should assert an error. You may receive other packets that are not responses to your query; you
should ignore these and continue to wait for a response to your query. Remember that network-
facing code should be written defensively. We will test your code by sending corrupted packets to
your client; you should handle these errors gracefully and not crash.

3 Your client program

For this project, you can choose your language. However, you may not use any DNS libraries in
your project (e.g., getaddrinfo or gethostbyname). You must construct the DNS request packet
yourself, and interpret the reply yourself. Also, your code MUST work on glados. I do not allow
any third party libraries; if your code does not compile or run on the glados server then it is your
fault.

1

3.1 Input and output

The command line syntax for your client is given below. The client program takes command line
argument of the domain name to interpret and the IP address of the domain server to query. The
syntax for launching your program is therefore:

./351dns @<server:port> <name>

port (Optional) The UDP port number of the DNS server. Default value: 53.

server (Required) The IP address of the DNS server, in a.b.c.d format.

name (Required) The name to query for.

After sending the request, your client should wait for a reply for 5 seconds. If no reply is heard
within this time window, you should exit indicating that a timeout occurred, by printing out the
NORESPONSE message.

To help us compare with the reference solution, your code must print out the packet to stan-
dard output by implementing dump_packet function. For example, if you have your packet in
buf and it is size bytes, long, you should call dump_packet(buf, size) right before you call
sendto(). You should see output like

[0000] 68 78 01 00 00 01 00 00 00 00 00 00 03 77 77 77 hx......www

[0010] 06 67 6F 6F 67 6C 65 03 63 6F 6D 00 00 01 00 01 .google. com.....

Your client must then wait for a response from the server, and print the result to standard
output using the following format:

IP <tab> <IP address> <tab> <auth|nonauth>

CNAME <tab> <alias> <tab> <auth|nonauth>

NOTFOUND

NORESPONSE

ERROR <tab> <description of the error>

If an response to a query contains multiple answers (such as multiple IP addresses or aliases),
your client must print an IP or CNAME line for each one of these. If the requested name does not
exist, your client must print a NOTFOUND line. If no response is ever received from the server (i.e.,
you’ve waited 5 seconds and not received anything), your client must print a NORESPONSE line.
Finally, if any other error occurs, your client should print an ERROR line containing a description
of the error.

3.2 Development

In this project, you will likely need to use bit masking to access certain bits of data you receive.
For example, at one point, you will need to check whether the first bit of a char a is a 1. To check
this, you can use the C bitwise AND (&) and bitwise OR (|):

unsigned char a = ...;

if (a & 0x80) { ... }

2

You can also use masking to set bits. For example, if you wanted to set the least significant bit of
a to 0, you can do

a &= 0xfe;

You should develop your client program on the Glados Linux machines, as these have the
necessary compiler and library support. You are welcome to use your own Linux/OS X machines,
but you are responsible for getting your code working, and your code must work when graded on
the glados Linux machines. If you do not have a glados account, you should get one ASAP in order
to complete the project.

Your code must be -Wall clean on gcc. Do not ask the instructor for help on (or post to the
forum) code that is not -Wall clean unless getting rid of the warning is what the problem is in the
first place.

4 Extra credit (15 points)

For extra credit, you can also support queries for MX (mail server) and NS (name server) records.
Therefore, your program should accept the following input syntax:

./3531dns [-ns|-mx] @<server:port> <name>

where the optional -ns or -mx flags request their respective records (if no flag is given, you should
query the A record). Your output for these records should look like

MX <tab> <alias> <tab> <preference> <tab> <auth|nonauth>

NS <tab> <alias> <tab> <auth|nonauth>

5 Testing

You can use the wireshark utility in order to diagnose problems with packets that you send out
(these will likely be malformatted at the beginning). Wireshark will capture packets that you send
and will let you view/explore the various fields. It will warn you about fields that are incorrect or
missing, and can guide debugging your packets.

You can use the dig utility in order to help diagnose problems with interpreting responses
from the DNS server that you query. To use it, see the man page, and an example of the output is
shown below:

bash$ dig www.cnn.com

; <<>> DiG 9.7.3-P3 <<>> www.cnn.com

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 43304

;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

;www.cnn.com. IN A

3

;; ANSWER SECTION:

www.cnn.com. 116 IN A 157.166.226.25

www.cnn.com. 116 IN A 157.166.226.26

www.cnn.com. 116 IN A 157.166.255.18

www.cnn.com. 116 IN A 157.166.255.19

;; Query time: 170 msec

;; SERVER: 192.168.100.1#53(192.168.100.1)

;; WHEN: Mon Mar 12 08:55:51 2012

;; MSG SIZE rcvd: 93

You will note that the output includes a number of the DNS header fields, as well as the full
contents of the question and answer sections (you can also see the output of the authority and
additional sections via command-line arguments).

6 Submitting your project

6.1 Registering your team

You should pick out a team name (no spaces or non-alphanumeric characters). One of team mem-
bers should send me an email (the title is [CSCI351] Registering a team) with team name, your
name, your RIT ID, partner name, partner’s RIT ID.

You must register your team by 11:59:59pm on October 18, 2019.

6.2 Final submission

For the final submission, you should submit your (thoroughly documented) code along with a
plain-text (no Word or PDF) README file. In this file, you should describe your high-level ap-
proach, the challenges you faced, a list of properties/features of your design that you think is
good, and an overview of how you tested your code. You MUST submit a “shell” runme.sh script
that generates the executable file 351dns: you choose your language so you have to prepare it. You
should submit your project to Project2 folder in the Mycourses Dropbox. Specifically, place all of
your code and README files into one folder (Project2) and zip it (TEAMNAME.zip) and upload
it to the Dropbox.

You must submit your project by 11:59:59pm on October 31, 2019.

7 Grading

The grading in this project will consist of

70% Program functionality

15% Error handling

15% Style and documentation

4

You are, however, going to be graded on how gracefully you handle errors. In other words,
what will you do if you receive a corrupted response packet? Remember, network-facing code
should be graded defensively; you should always assume that everyone is trying to break your
program. To paraphrase John F. Woods, “Always code as if the [the remote machine you’re com-
municating with] will be a violent psychopath who knows where you live."

Any third party libraries usage will be considered as fail.

8 Advice

A few pointers that you may find useful while working on this project:

• Remember to convert your integers, shorts, and longs to network ordering (using hton()

and associated functions).

• Check the Mycourses for question and clarifications. You should post project-specific ques-
tions there first, before emailing the professor.

• Finally, get started early and come to the instructor’s office hours. You are welcome to come
to the lab and work, and ask the instructor any questions you may have.

5

	Description
	Requirements
	Your client program
	Input and output
	Development

	Extra credit (15 points)
	Testing
	Submitting your project
	Registering your team
	Final submission

	Grading
	Advice

