
Lecture 4: Crash Course in C Sockets

(Prepare yourself for Project 1)

CSCI-351 
Data communication and Networks

The slide is built with the help of Prof. Alan Mislove, Christo Wilson, and David Choffnes's class

Socket Programming
 2

Goal: familiarize yourself with socket programming
! Why am I presenting C sockets?

Socket Programming
 2

Goal: familiarize yourself with socket programming
! Why am I presenting C sockets?
! Because C sockets are the de-facto standard for networking

APIs

C Sockets
 3

Socket API since 1983
! Berkeley Sockets
! BSD Sockets (debuted with BSD 4.2)
! Unix Sockets (originally included with AT&T Unix)
! Posix Sockets (slight modifications)
Original interface of TCP/IP
! All other socket APIs based on C sockets

❑ High-level Design
❑ Server API
❑ Client API + Name resolution
❑ Other Considerations

Outline 4

Clients and Servers
 5

A fundamental problem: rendezvous
! One or more parties want to provide a service
! One or more parties want to use the service
! How do you get them together?

Clients and Servers
 5

A fundamental problem: rendezvous
! One or more parties want to provide a service
! One or more parties want to use the service
! How do you get them together?
Solution: client-server architecture
! Client: initiator of communication
! Server: responder
! At least one side has to wait for the other
■ Service provider (server) sits and waits
■ Clients locates servers, initiates contact
■ Use well-known semantic names for location (DNS)

Key Differences

Clients
Execute on-demand
Unprivileged
Simple
(Usually) sequential
Not performance
sensitive

Servers
Always-on
Privileged
Complex
(Massively) concurrent
High performance
Scalable

 6

Similarities
 7

Share common protocols
! Application layer
! Transport layer
! Network layer
Both rely on APIs for network access

Sockets
 8

Basic network abstraction: the socket

Sockets
 8

Basic network abstraction: the socket

Socket: an object that allows reading/writing from a
network interface
In Unix, sockets are just file descriptors
! read() and write() both work on sockets
! Caution: socket calls are blocking

C Socket API Overview

Clients
1. gethostbyname()
2. socket()
3. connect()
4. write() / send()
5. read() / recv()
6. close()

Servers
1. socket()
2. bind()
3. listen()
4. while (whatever) {
5. accept()
6. read() / recv()
7. write() / send()
8. close()
9. }
10. close()

 9

C Socket API Overview

Clients
1. gethostbyname()
2. socket()
3. connect()
4. write() / send()
5. read() / recv()
6. close()

Servers
1. socket()
2. bind()
3. listen()
4. while (whatever) {
5. accept()
6. read() / recv()
7. write() / send()
8. close()
9. }
10. close()

 9

int socket(int, int, int)
 10

Most basic call, used by clients and servers
Get a new socket
Parameters
! int domain: a constant, usually PF_INET
! int type: a constant, usually SOCK_STREAM or SOCK_DGRAM

■ SOCK_STREAM means TCP
■ SOCK_DGRAM means UDP

! int protocol: usually 0 (zero)
Return: new file descriptor, -1 on error
Many other constants are available
! Why so many options?

int socket(int, int, int)
 10

Most basic call, used by clients and servers
Get a new socket
Parameters
! int domain: a constant, usually PF_INET
! int type: a constant, usually SOCK_STREAM or SOCK_DGRAM

■ SOCK_STREAM means TCP
■ SOCK_DGRAM means UDP

! int protocol: usually 0 (zero)
Return: new file descriptor, -1 on error
Many other constants are available
! Why so many options?

The C socket API is extensible.
• The Internet isn’t the only network domain
• TCP/UDP aren’t the only transport protocols
• In theory, transport protocols may have different

dialects

int bind(int, struct sockaddr *, int)
 11

Used by servers to associate a socket to a network
interface and a port
! Why is this necessary?
Parameters:
! int sockfd: an unbound socket
! struct sockaddr * my_addr: the desired IP address and port
! int addrlen: sizeof(struct sockaddr)

Return: 0 on success, -1 on failure
! Why might bind() fail?

int bind(int, struct sockaddr *, int)
 11

Used by servers to associate a socket to a network
interface and a port
! Why is this necessary?
Parameters:
! int sockfd: an unbound socket
! struct sockaddr * my_addr: the desired IP address and port
! int addrlen: sizeof(struct sockaddr)

Return: 0 on success, -1 on failure
! Why might bind() fail?

• Each machine may have multiple network interfaces
• Example: Wifi and Ethernet in your laptop
• Example: Cellular and Bluetooth in your phone

• Each network interface has its own IP address
• We’ll talk about ports next…

int bind(int, struct sockaddr *, int)
 11

Used by servers to associate a socket to a network
interface and a port
! Why is this necessary?
Parameters:
! int sockfd: an unbound socket
! struct sockaddr * my_addr: the desired IP address and port
! int addrlen: sizeof(struct sockaddr)

Return: 0 on success, -1 on failure
! Why might bind() fail?

Port Numbers
 12

Port Numbers
 12

Basic mechanism for multiplexing applications per host
! 65,535 ports available
! Why?

Port Numbers
 12

Basic mechanism for multiplexing applications per host
! 65,535 ports available
! Why?

TCP/UDP port field is
16-bits wide

Port Numbers
 12

Basic mechanism for multiplexing applications per host
! 65,535 ports available
! Why?
Ports <1024 are reserved
! Only privileged processes (e.g. superuser) may access
! Why?
! Does this cause security issues?

Port Numbers
 12

Basic mechanism for multiplexing applications per host
! 65,535 ports available
! Why?
Ports <1024 are reserved
! Only privileged processes (e.g. superuser) may access
! Why?
! Does this cause security issues?• In olden times, all important apps used low

port numbers
• Examples: IMAP, POP, HTTP, SSH, FTP
• This rule is no longer useful

Port Numbers
 12

Basic mechanism for multiplexing applications per host
! 65,535 ports available
! Why?
Ports <1024 are reserved
! Only privileged processes (e.g. superuser) may access
! Why?
! Does this cause security issues?
“I tried to open a port and got an error”
! Port collision: only one app per port per host
! Dangling sockets…

Dangling Sockets
 13

Common error: bind fails with “already in use” error
OS kernel keeps sockets alive in memory after close()
! Usually a one minute timeout
! Why?

Dangling Sockets
 13

Common error: bind fails with “already in use” error
OS kernel keeps sockets alive in memory after close()
! Usually a one minute timeout
! Why?

• Closing a TCP socket is a multi-step process
• Involves contacting the remote machine
• “Hey, this connection is closing”
• Remote machine must acknowledge the closing
• All this book keeping takes time

Dangling Sockets
 13

Common error: bind fails with “already in use” error
OS kernel keeps sockets alive in memory after close()
! Usually a one minute timeout
! Why?

Dangling Sockets
 13

Common error: bind fails with “already in use” error
OS kernel keeps sockets alive in memory after close()
! Usually a one minute timeout
! Why?
Allowing socket reuse

int yes=1;
if (setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(int))
== -1) { perror("setsockopt"); exit(1); }

struct sockaddr
 14

Structure for storing naming information
! But, different networks have different naming conventions
! Example: IPv4 (32-bit addresses) vs. IPv6 (64-bit addresses)

struct sockaddr
 14

Structure for storing naming information
! But, different networks have different naming conventions
! Example: IPv4 (32-bit addresses) vs. IPv6 (64-bit addresses)
In practice, use more specific structure implementation

1. struct sockaddr_in my_addr;
2. memset(&my_addr, 0, sizeof(sockaddr_in));
3. my_addr.sin_family = htons(AF_INET);
4. my_addr.sin_port = htons(MyAwesomePort);
5. my_addr.sin_addr.s_addr = inet_addr("10.12.110.57");

htons(), htonl(), ntohs(), ntohl()
 15

Little Endian vs. Big Endian
! Not a big deal as long as data stays local
! What about when hosts communicate over networks?

htons(), htonl(), ntohs(), ntohl()
 15

Little Endian vs. Big Endian
! Not a big deal as long as data stays local
! What about when hosts communicate over networks?
Network byte order
! Standardized to Big Endian
! Be careful: x86 is Little Endian
Functions for converting host order to network order
! h to n s – host to network short (16 bits)
! h to n l – host to network long (32 bits)
! n to h * – the opposite

Binding Shortcuts
 16

If you don’t care about the port
! my_addr.sin_port = htons(0);
! Chooses a free port at random
! This is rarely the behavior you want

Binding Shortcuts
 16

If you don’t care about the port
! my_addr.sin_port = htons(0);
! Chooses a free port at random
! This is rarely the behavior you want
If you don’t care about the IP address
! my_addr.sin_addr.s_addr = htonl(INADDR_ANY);
! INADDR_ANY == 0
! Meaning: don’t bind to a specific IP
! Traffic on any interface will reach the server
■ Assuming its on the right port

! This is usually the behavior you want

int listen(int, int)
 17

Put a socket into listen mode
! Used on the server side
! Wait around for a client to connect()
Parameters
! int sockfd: the socket
! int backlog: length of the pending connection queue
■ New connections wait around until you accept() them
■ Just set this to a semi-large number, e.g. 1000

Return: 0 on success, -1 on error

int accept(int, void *, int *)
 18

Accept an incoming connection on a socket
Parameters
! int sockfd: the listen()ing socket
! void * addr: pointer to an empty struct sockaddr
■ Clients IP address and port number go here
■ In practice, use a struct sockaddr_in

! int * addrlen: length of the data in addr
■ In practice, addrlen == sizeof(struct sockaddr_in)

Return: a new socket for the client, or -1 on error
! Why?

int accept(int, void *, int *)
 18

Accept an incoming connection on a socket
Parameters
! int sockfd: the listen()ing socket
! void * addr: pointer to an empty struct sockaddr
■ Clients IP address and port number go here
■ In practice, use a struct sockaddr_in

! int * addrlen: length of the data in addr
■ In practice, addrlen == sizeof(struct sockaddr_in)

Return: a new socket for the client, or -1 on error
! Why?

• You don’t want to consume your listen() socket
• Otherwise, how would you serve more clients?
• Closing a client connection shouldn’t close the server

close(int sockfd)
 19

Close a socket
! No more sending or receiving

shutdown(int sockfd, int how)
! Partially close a socket
■ how = 0; // no more receiving
■ how = 1; // no more sending
■ how = 2; // just like close()

! Note: shutdown() does not free the file descriptor
! Still need to close() to free the file descriptor

C Socket API Overview

Clients
1. gethostbyname()
2. socket()
3. connect()
4. write() / send()
5. read() / recv()
6. close()

Servers
1. socket()
2. bind()
3. listen()
4. while (whatever) {
5. accept()
6. read() / recv()
7. write() / send()
8. close()
9. }
10. close()

 20

struct * gethostbyname(char *)
 21

Returns information about a given host
Parameters
! const char * name: the domain name or IP address of a host
! Examples: “www.google.com”, “10.137.4.61”
Return: pointer to a hostent structure, 0 on failure
! Various fields, most of which aren’t important

1. struct hostent * h = gethostname(“www.google.com”);
2. struct sockaddr_in my_addr;
3. memcpy(&my_addr.sin_addr.s_addr, h->h_addr,
 h->h_length);

int connect(int, struct sockaddr *, int)
 22

Connect a client socket to a listen()ing server socket
Parameters
! int sockfd: the client socket
! struct sockaddr * serv_addr: address and port of the server
! int addrlen: length of the sockaddr structure
Return: 0 on success, -1 on failure
Notice that we don’t bind() the client socket
! Why?

write() and send()
 23

ssize_t write(int fd, const void *buf, size_t count);
! fd: file descriptor (ie. your socket)
! buf: the buffer of data to send
! count: number of bytes in buf
! Return: number of bytes actually written
int send(int sockfd, const void *msg, int len, int flags);
! First three, same as above
! flags: additional options, usually 0
! Return: number of bytes actually written
Do not assume that count / len == the return value!
! Why might this happen?

read() and recv()
 24

ssize_t read(int fd, void *buf, size_t count);
! Fairly obvious what this does
int recv(int sockfd, void *buf, int len, unsigned int flags);
! Seeing a pattern yet?
Return values:
! -1: there was an error reading from the socket
■ Usually unrecoverable. close() the socket and move on

! >0: number of bytes received
■ May be less than count / len

! 0: the sender has closed the socket

More Resources
 25

Beej’s famous socket tutorial
! http://beej.us/net2/html/syscalls.html

