## CSCI-351 Data communication and Networks

#### Lecture 14: Content Delivery Networks (Over 1 billion served ... each day)

The slide is built with the help of Prof. Alan Mislove, Christo Wilson, and David Choffnes's class



## MotivationCDN basics

#### Prominent example: Akamai

#### Content in today's Internet

Most flows are HTTP....

3

Web is at least 52% of traffic (as of early 2000), however...

- HTTP uses TCP, so it will
  Be ACK clocked
  For Web, likely never leave slow start
  QUIC?
- Is the Internet designed for this common case?
  Why?

## **Evolution of Serving Web Content**

- 4
- In the beginning...
  - ...there was a single server
  - Probably located in a closet
  - And it probably served blinking text
- Issues with this model
  - Site reliability
    - Unplugging cable, hardware failure, natural disaster
  - Scalability
    - Flash crowds (aka Slashdotting)



### Replicated Web service

- Use multiple servers
- Advantages

- Better scalability
- Better reliability
- Disadvantages
  - How do you decide which server to use?
  - How to do synchronize state among servers?



#### Load Balancers

- Device that multiplexes requests across a collection of servers
  - All servers share one public IP
  - Balancer transparently directs requests to different servers
- How should the balancer assign clients to se
  - Random / round-robin
    - When is this a good idea?
  - Load-based
    - When might this fail?
- Challenges
  - Scalability (must support traffic for n hosts)
  - State (must keep track of previous decisions)



#### Load balancing: Are we done?

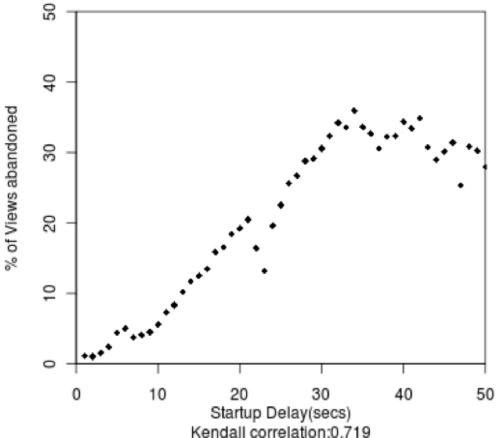
- Advantages
  - Allows scaling of hardware independent of IPs
  - Relatively easy to maintain
- Disadvantages
  - Expensive
  - Still a single point of failure
  - Location!


Where do we place the load balancer for Wikipedia?

## Popping up: HTTP performance

- For Web pages
  - RTT matters most
  - Where should the server go?
- For video

- Available bandwidth matters most
- Where should the server go?
- Is there one location that is best for everyone?


#### Server placement



#### Why speed matters

#### 10

## Impact on user experience Users navigating away from pages Video startup delay



## Why speed matters

- Impact on user experience
  Users navigating away from pages
  Video startup delay
- Impact on revenue
  - Amazon: increased revenue 1% for every 100ms reduction in PLT\*
- Ping from ROC to LAX: ~100ms



### Strawman solution: Web caches

- 12
- ISP uses a middlebox that caches Web content
  - Better performance content is closer to users
  - Lower cost content traverses network boundary once
  - Does this solve the problem?
- No!
  - Size of all Web content is too large
    - Zipf distribution limits cache hit rate
  - Web content is dynamic and customized
    - Can't cache banking content
    - What does it mean to cache search results?



# Motivation CDN basics

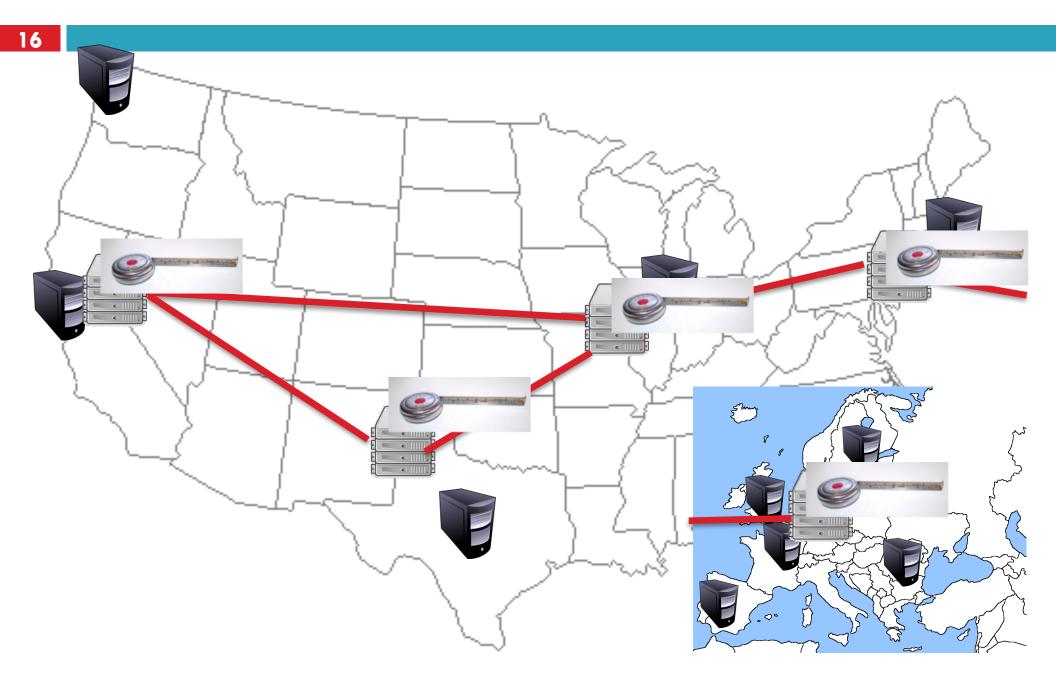
#### Prominent example: Akamai

## What is a CDN?

#### 14

#### Content Delivery Network

- Also sometimes called Content Distribution Network
- At least half of the world's bits are delivered by a CDN
  - Probably closer to 80/90%


#### Primary Goals

- Create replicas of content throughout the Internet
- Ensure that replicas are always available
- Directly clients to replicas that will give good performance

## Key Components of a CDN

- 15
- Distributed servers
  - Usually located inside of other ISPs
    Why?
- High-speed network connecting them
- Clients
  - Can be located anywhere in the world
  - They want fast Web performance
- Glue
  - Something that binds clients to "nearby" replica servers

## Key CDN Components



#### **Examples of CDNs**

- Akamai
  - 147K+ servers, 1200+ networks, 92 countries (in early 2010)
  - 240K+ servers, 1700+ networks, 130 countries (now)
- Cloudflare, Limelight, Edgecast, and others web service providers (e.g., Google, Facebook)
  - □ Advice…?

## Inside a CDN

- Servers are deployed in clusters for reliability
  - Some may be offline
    - Could be due to failure
    - Also could be "suspended" (e.g., to save power or for upgrade)
- Could be multiple clusters per location (e.g., in multiple racks)
- Server locations
  - Well-connected points of presence (PoPs)
  - Inside of ISPs

## Mapping clients to servers (1)

- 19
- CDNs need a way to send clients to the "best" server
  - The best server can change over time
  - And this depends on client location, network conditions, server load, ...
  - What existing technology can we use for this?
- URL Rewriting
  - Modifies the URL of specific content
  - netflix.com/movie1 to a17.akamai.com/movie1
  - Requires content modification in the origin websites
    - But it allows fine-grained controls

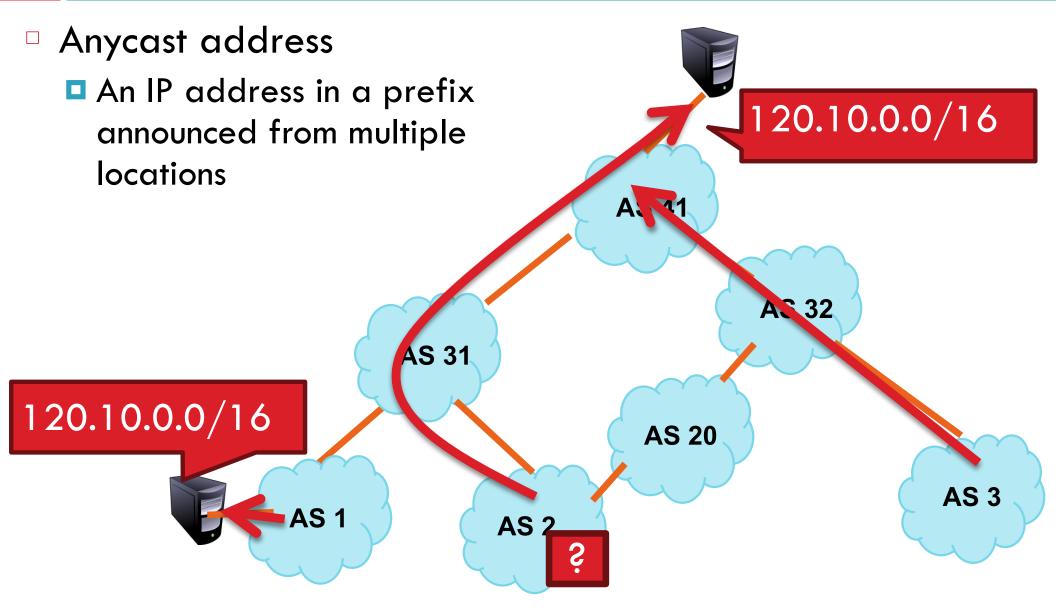
## Mapping clients to servers (2)

- DNS-based redirection (most widely used)
  - DNS Server approaches
    - Clients request <u>www.foo.com</u>
    - DNS server directs client to one or more IPs based on request IP
    - Use short TTL to limit the effect of caching
  - CNAME approaches
    - Clients request www.foo.com
    - Returned record is foo.com CNAME a18.akamai.com

#### **CDN** redirection example

#### 21

tijay\$ dig www.fox.com


#### ;; ANSWER SECTION:

| www.fox.com.                  | 510       | IN    | CNAME     | www.fox-rma.com.edgesuite.net. |
|-------------------------------|-----------|-------|-----------|--------------------------------|
| www.fox-rma.com.edgesuite.net | . 5139 IN | CNAME | a2047.w7. | akamai.net.                    |
| a2047.w7.akamai.net.          | 4         | IN    | A         | 23.62.96.128                   |
| a2047.w7.akamai.net.          | 4         | IN    | A         | 23.62.96.144                   |
| a2047.w7.akamai.net.          | 4         | IN    | A         | 23.62.96.193                   |
| a2047.w7.akamai.net.          | 4         | IN    | A         | 23.62.96.162                   |
| a2047.w7.akamai.net.          | 4         | IN    | A         | 23.62.96.185                   |
| a2047.w7.akamai.net.          | 4         | IN    | A         | 23.62.96.154                   |
| a2047.w7.akamai.net.          | 4         | IN    | A         | 23.62.96.169                   |
| a2047.w7.akamai.net.          | 4         | IN    | A         | 23.62.96.152                   |
| a2047.w7.akamai.net.          | 4         | IN    | A         | 23.62.96.186                   |

## **DNS Redirection Considerations**

- 22
- Advantages
  - Uses existing, scalable DNS infrastructure
  - URLs can stay essentially the same
  - TTLs can control "freshness"
- Limitations
  - DNS servers see only the DNS server IP
    - Assumes that client and DNS server are close. Is this accurate?
  - Content owner must give up control
  - Unicast addresses can limit reliability; the client will connect to "one" IP

## **CDN Using Anycast**



#### **Anycasting Considerations**

- Why do anycast?
  - Simplifies network management
    - Replica servers can be in the same network domain
  - Uses best BGP path
- Disadvantages
  - BGP path may not be optimal
  - Stateful services can be complicated

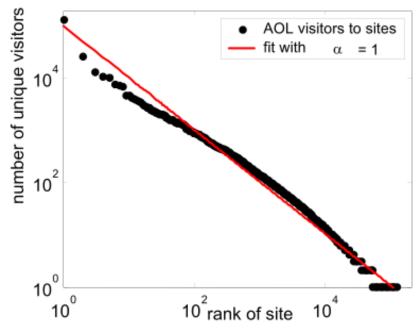
## **Optimizing Performance**

25

#### Key goal

Send clients to server with best end-to-end performance

- Performance depends on
  - Server load
  - Content at that server
  - Network conditions
- Optimizing for server load
  - Load balancing, monitoring at servers
  - Generally solved


## Optimizing performance: caching

26

- Where to cache content?
  - Popularity of Web objects is Zipflike
    - Also called heavy-tailed and power law

 $\square N_r \sim r^{-1}$ 

- Small number of sites cover large fraction of requests
- Different popularity depending on the location
  - Temporal and spatial popularity
- Do you think it is easy to predict?



## **Optimizing performance: Network**

27

There are good solutions to server load and content
 What about network performance?

Key challenges for network performance
 Measuring paths is hard

- Traceroute gives us only the forward path
- Shortest path != best path
- RTT estimation is hard
  - Variable network conditions
  - May not represent end-to-end performance
- No access to client-perceived performance

## **Optimizing performance: Network**

- Example approximation strategies
  - Geographic mapping
    - Internet paths do not take shortest distance
  - Active measurement
    - Ping from all replicas to all routable prefixes
    - 56B \* 100 servers \* 500k prefixes = 500+MB of traffic per round
  - Passive measurement
    - Send fraction of clients to different servers, observe performance
    - Downside: Some clients get bad performance

THE ACCIDENTAL LEAK ---

#### Google goes down after major BGP mishap routes traffic through China

Google says it doesn't believe leak was malicious despite suspicious appearances.

29

DAN GOODIN - 11/13/2018, 2:25 AM



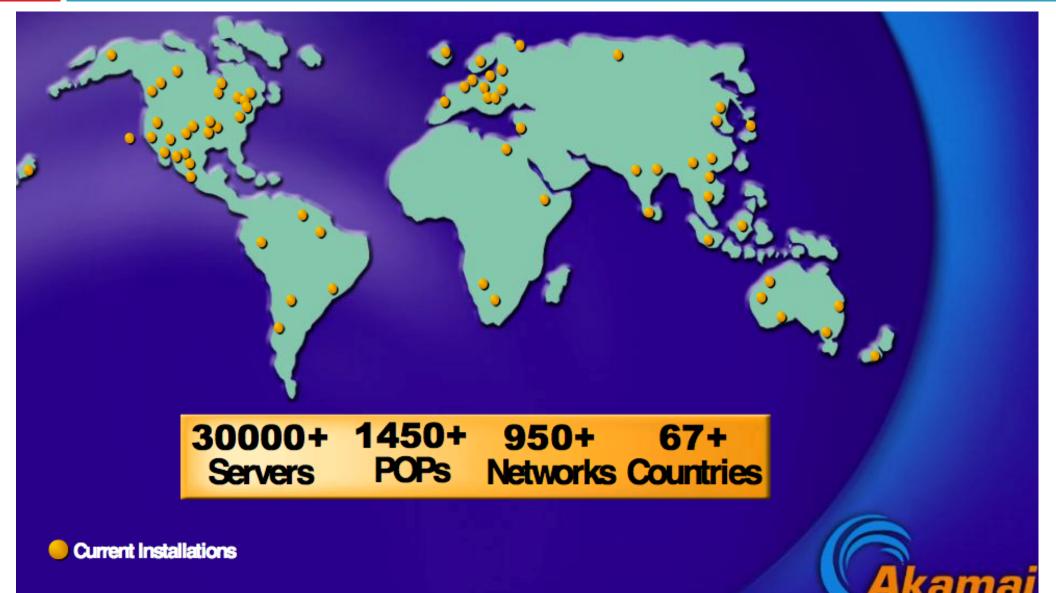
#### How to understand CDNs

- 30
- Deploy multiple servers across the globe
  - How to make users connect the CDN server?
    - Changing all URLs of the content
    - DNS Authoritative server
  - How to find the best server?
    - IPs of DNS resolver
    - Anycast
    - EDNS (not covered from the class)



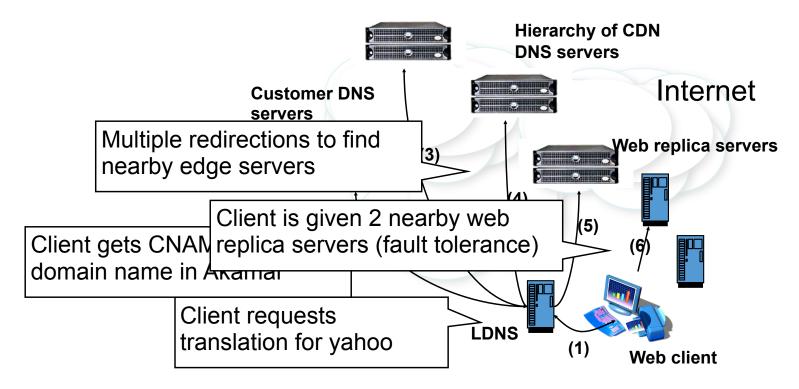
# Motivation CDN basics Prominent example: Akamai

#### Akamai case study


#### Deployment

- 147K+ servers, 1200+ networks, 650+ cities, 92 countries
- highly hierarchical, caching depends on popularity
- 4 yr depreciation of servers
- Many servers inside ISPs, who are thrilled to have them
- Deployed inside100 new networks in last few years
- Customers
  - 250K+ domains: all top 60 eCommerce sites, all top 30 M&E companies, 9 of 10 to banks, 13 of top 15 auto manufacturers

#### Overall stats


- 5+ terabits/second, 30+ million hits/second, 2+ trillion deliveries/ day, 100+ PB/day, 10+ million concurrent streams
- 15-30% of Web traffic

#### Somewhat old network map



#### **DNS** Redirection

- 34
- Web client's request redirected to 'close' by server
  - Client gets web site's DNS CNAME entry with domain name in CDN network
  - Hierarchy of CDN's DNS servers direct client to 2 nearby servers

