
Lecture 11: Transport
(UDP, but mostly TCP)

CSCI-351 
Data communication and Networks

The slide is built with the help of Prof. Alan Mislove, Christo Wilson, and David Choffnes's class

Transport Layer
 2

Function:
! Demultiplexing of data streams
Optional functions:
! Creating long lived connections
! Reliable, in-order packet delivery
! Error detection
! Flow and congestion control
Key challenges:
! Detecting and responding to congestion
! Balancing fairness against high utilization

Application

Presentation

Session

Transport

Network

Data Link

Physical

❑ UDP
❑ TCP
❑ Congestion Control
❑ Evolution of TCP
❑ Problems with TCP

Outline 3

The Case for Multiplexing
 4

Datagram network
! No circuits
! No connections
Clients run many applications at the
same time
! Who to deliver packets to?
Using IP header “protocol” field?
! 8 bits = 256 concurrent streams
Insert Transport Layer to handle
demultiplexing

Packet

Network

Data Link

Physical

Transport

Demultiplexing Traffic
 5

Endpoints identified by <src_ip, src_port, dest_ip, dest_port>

Network

Transport

Application

P1 P2 P3 P4 P6 P7P5

Host 1 Host 2 Host 3
Unique port for
each application

Server applications
communicate with multiple

clients

Layering, Revisited
 6

Application

Transport

Network

Data Link

Physical

Host 1 Router Host 2

Physical

Lowest level end-to-end protocol (in theory)
! Transport header only read by source and destination
! Routers view transport header as payload

Application

Transport

Network

Data Link

Physical

Network

Data Link

Layers communicate peer-
to-peer

User Datagram Protocol (UDP)
 7

Simple, connectionless datagram
! C sockets: SOCK_DGRAM
Port numbers enable demultiplexing
! 16 bits = 65535 possible ports
! Port 0 is invalid
Checksum for error detection
! Detects (some) corrupt packets
! Does not detect dropped, duplicated, or reordered packets

Destination Port
0 16 31

Payload Length
Source Port

Checksum

Uses for UDP
 8

Invented after TCP
! Why?

Not all applications can tolerate TCP
Custom protocols can be built on top of UDP
! Reliability? Strict ordering?
! Flow control? Congestion control?
Examples
! RTMP, real-time media streaming (e.g. voice, video)
! Facebook datacenter protocol

! Why?

❑ UDP
❑ TCP
❑ Congestion Control
❑ Evolution of TCP
❑ Problems with TCP

Outline 9

Options

Transmission Control Protocol
 10

Reliable, in-order, bi-directional byte streams
! Port numbers for demultiplexing
! Virtual circuits (connections)
! Flow control
! Congestion control, approximate fairness

Destination Port
0 16 31

Sequence Number
Source Port

Acknowledgement Number
Advertised Window

Urgent Pointer
Flags

Checksum

4

HLen

Common TCP Options
 11

Window scaling
SACK: selective acknowledgement
Maximum segment size (MSS)
Timestamp

Options

Destination Port
0 16 31

Sequence Number
Source Port

Acknowledgement Number
Advertised Window

Urgent Pointer
Flags

Checksum

4

HLen

Connection Setup
 12

Why do we need connection setup?
! To establish state on both hosts
! Most important state: sequence numbers
■ Count the number of bytes that have been sent
■ Initial value chosen at random
■ Why?

Important TCP flags (1 bit each)
! SYN – synchronization, used for connection setup
! ACK – acknowledge received data
! FIN – finish, used to tear down connection

Three Way Handshake
 13

Each side:
! Notifies the other of starting sequence number
! ACKs the other side’s starting sequence number

Client Server
SYN <SeqC, 0>

SYN/ACK <SeqS, SeqC+1>

ACK <SeqC+1, SeqS+1>

Why
Sequence # +1?

Connection Setup Issues
 14

Connection confusion
! How to disambiguate connections from the same host?
! Random sequence numbers
Source spoofing
! Need good random number generators!
Connection state management
! Each SYN allocates state on the server
! SYN flood = denial of service attack
! Solution: SYN cookies

Connection Tear Down
 15

Either side can initiate
tear down
Other side may continue
sending data
! Half open connection
Acknowledge the last FIN
! Sequence number + 1

Client Server
FIN <SeqA, *>

ACK <*, SeqA+1>

ACK

Data

FIN <SeqB, *>

ACK <*, SeqB+1>

Sequence Number Space
 16

TCP uses a byte stream abstraction
! Each byte in each stream is numbered
! 32-bit value, wraps around
! Initial, random values selected during setup
Byte stream broken down into segments (packets)
! Size limited by the Maximum Segment Size (MSS)
! Set to limit fragmentation

Each segment has a sequence number

Segment 8 Segment 9 Segment 10

13450 14950 16050 17550

Bidirectional Communication
 17

Each side of the connection can send and receive
! Different sequence numbers for each direction

Client Server
Data (1460 bytes)

Data/ACK (730 bytes)

Data/ACK (1460 bytes)

Seq. Ack. Seq. Ack.
1 23

23 1461

1461 753

753 2921Data and ACK in the
same packet

23 1

Flow Control
 18

Problem: how many packets should a sender transmit?
! Too many packets may overwhelm the receiver
! Size of the receivers buffers may change over time
Solution: sliding window
! Receiver tells the sender how big their buffer is
! Called the advertised window
! For window size n, sender may transmit n bytes without

receiving an ACK
! After each ACK, the window slides forward
Window may go to zero!

Flow Control: Sender Side
 19

Sequence Number

Src. Port

Acknowledgement Number

Window
Urgent Pointer

Flags

Checksum

HL

Packet Sent
Dest. PortSrc. Port

Acknowledgement Number

Window

Urgent Pointer

Flags

Checksum

HL

Packet Received
Dest. Port

Sequence Number

ACKed Sent To Be Sent Outside Window

Window

App Write
Must be buffered

until ACKed

Sliding Window Example
 20

1
2
3

4
5
6

7

5
6
7

Time Time

TCP is ACK Clocked
• Short RTT ! quick ACK ! window slides quickly
• Long RTT ! slow ACK ! window slides slowly

What Should the Receiver ACK?

1. ACK every packet
2. Use cumulative ACK, where an ACK for sequence n

implies ACKS for all k < n
3. Use negative ACKs (NACKs), indicating which packet did

not arrive
4. Use selective ACKs (SACKs), indicating those that did

arrive, even if not in order
! SACK is an actual TCP extension

 21

20

Sequence Numbers, Revisited
 22

32 bits, unsigned
Guard against stray packets
! IP packets have a maximum segment lifetime (MSL) of 120

seconds
■ i.e. a packet can linger in the network for 2 minutes

! Sequence number would wrap around

Silly Window Syndrome
 23

Problem: what if the window size is very small?
! Multiple, small packets, headers dominate data

Equivalent problem: sender transmits packets one byte at
a time

1. for (int x = 0; x < strlen(data); ++x)
2. write(socket, data + x, 1);

Header Data Header Data Header Data Header Data

Nagle’s Algorithm
 24

1. If the window >= MSS and available data >= MSS:
 Send the data

2. Elif there is unACKed data:
 Enqueue data in a buffer (send after a timeout)

3. Else: send the data

Problem: Nagle’s Algorithm delays transmissions
! What if you need to send a packet immediately?
1. int flag = 1;
2. setsockopt(sock, IPPROTO_TCP, TCP_NODELAY, (char *)

&flag, sizeof(int));

Send a full
packet

Send a non-full packet if
nothing else is happening

Error Detection
 25

Checksum detects (some) packet corruption
! Computed over IP header, TCP header, and data

Sequence numbers catch sequence problems
! Duplicates are ignored
! Out-of-order packets are reordered or dropped
! Missing sequence numbers indicate lost packets
Lost segments detected by sender
! Use timeout to detect missing ACKs
! Need to estimate RTT to calibrate the timeout
! Sender must keep copies of all data until ACK

Retransmission Time Outs (RTO)
 26

Problem: time-out is linked to round trip time

Initial Send

ACK

Retry

RT
O

Initial Send

ACK
Retry

RT
O

Timeout is
too short

What about if
timeout is too

long?

Round Trip Time Estimation
 27

Original TCP round-trip estimator
! RTT estimated as a moving average
! new_rtt = α (old_rtt) + (1 – α)(new_sample)
! Recommended α: 0.8-0.9 (0.875 for most TCPs)
RTO = 2 * new_rtt (i.e. TCP is conservative)

Data

ACKSample

RTT Sample Ambiguity
 28

Karn’s algorithm: ignore samples for retransmitted
segments

Initial Send

ACK

Retry

RT
O

Initial Send

ACK
Retry

RT
O

Sa
m

pl
e Sample?

❑ UDP
❑ TCP
❑ Flow Control
❑ Congestion Control
❑ Evolution of TCP
❑ Problems with TCP

Outline 29

What is Congestion?
 30

Load on the network is higher than capacity
! Capacity is not uniform across networks
■ Modem vs. Cellular vs. Cable vs. Fiber Optics

! There are multiple flows competing for bandwidth
■ Residential cable modem vs. corporate datacenter

! Load is not uniform over time
■ 10pm, Sunday night = Bittorrent Game of Thrones

Why is Congestion Bad?
 31

Results in packet loss
! Routers have finite buffers
! Internet traffic is self similar, no buffer can prevent all drops
! When routers get overloaded, packets will be dropped
Practical consequences
! Router queues build up, delay increases
! Wasted bandwidth from retransmissions
! Low network goodput

The Danger of Increasing Load
 32

Knee – point after which
! Throughput increases very

slow
! Delay increases fast

Cliff – point after which
! Throughput ! 0
! Delay ! ∞

Congestion
Collapse

Load

Load

G
oo

dp
ut

D
el

ay

Knee Cliff

Ideal point

Cong. Control vs. Cong. Avoidance
 33

Congestion
Collapse

G
oo

dp
ut

Knee Cliff

Load

Congestion Avoidance:
Stay left of the knee

Congestion Control:
Stay left of the cliff

Advertised Window, Revisited
 34

Does TCP’s advertised window solve congestion?
NO

The advertised window only protects the receiver
A sufficiently fast receiver can max the window
! What if the network is slower than the receiver?
! What if there are other concurrent flows?

Key points
! Window size determines send rate
! Window must be adjusted to prevent congestion collapse

Goals of Congestion Control
 35

1. Adjusting to the bottleneck bandwidth
2. Adjusting to variations in bandwidth
3. Sharing bandwidth between flows
4. Maximizing throughput

General Approaches
 36

Do nothing, send packets indiscriminately
! Many packets will drop, totally unpredictable performance
! May lead to congestion collapse
Reservations
! Pre-arrange bandwidth allocations for flows
! Requires negotiation before sending packets
! Must be supported by the network
Dynamic adjustment
! Use probes to estimate level of congestion
! Speed up when congestion is low
! Slow down when congestion increases
! Messy dynamics, requires distributed coordination

TCP Congestion Control
 37

Each TCP connection has a window
! Controls the number of unACKed packets

Sending rate is ~ window/RTT
Idea: vary the window size to control the send rate
Introduce a congestion window at the sender
! Congestion control is sender-side problem

Congestion Window (cwnd)
 38

Limits how much data is in transit
Denominated in bytes

1. wnd = min(cwnd, adv_wnd);
2. effective_wnd = wnd –
 (last_byte_sent – last_byte_acked);

last_byte_acked last_byte_sent

wnd

effective_wnd

Two Basic Components
 39

1. Detect congestion
! Packet dropping is most reliably signal
■ Delay-based methods are hard and risky

! How do you detect packet drops? ACKs
■ Timeout after not receiving an ACK
■ Several duplicate ACKs in a row (ignore for now)

2. Rate adjustment algorithm
! Modify cwnd
! Probe for bandwidth
! Responding to congestion

Rate Adjustment
 40

Recall: TCP is ACK clocked
! Congestion = delay = long wait between ACKs
! No congestion = low delay = ACKs arrive quickly
Basic algorithm
! Upon receipt of ACK: increase cwnd
■ Data was delivered, perhaps we can send faster
■ cwnd growth is proportional to RTT

! On loss: decrease cwnd
■ Data is being lost, there must be congestion

Question: increase/decrease functions to use?

Utilization and Fairness
 41

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Max
throughput for

flow 2

Zero
throughput for

flow 1 Max
throughput for

flow 1

Zero
throughput for

flow 2

Less than full
utilization

More than full
utilization

(congestion)
Ideal point

• Max efficiency
• Perfect fairness

Equal
throughput
(fairness)

Multiplicative Increase, Additive Decrease
 42

Not stable!
Veers away from
fairness

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Additive Increase, Additive Decrease
 43

Stable
But does not
converge to
fairness

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Multiplicative Increase, Multiplicative Decrease
 44

Stable
But does not
converge to
fairness

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Additive Increase, Multiplicative Decrease
 45

Converges to
stable and fair
cycle
Symmetric around
y=x

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Implementing Congestion Control

Maintains three variables:
! cwnd: congestion window
! adv_wnd: receiver advertised window
! ssthresh: threshold size (used to update cwnd)
For sending, use: wnd = min(cwnd, adv_wnd)
Two phases of congestion control
1. Slow start (cwnd < ssthresh)
■ Probe for bottleneck bandwidth

2. Congestion avoidance (cwnd >= ssthresh)
■ AIMD

 46

45

Slow Start

Goal: reach knee quickly
Upon starting (or restarting) a connection
! cwnd =1
! ssthresh = adv_wnd
! Each time a segment is ACKed, cwnd++
Continues until…
! ssthresh is reached
! Or a packet is lost

Slow Start is not actually slow
! cwnd increases exponentially

 47

Load

G
oo

dp
ut

Knee Cliff

Slow Start Example
 48

1

2
3

4
5
6
7

cwnd = 1

cwnd = 2

cwnd = 4

cwnd = 8

cwnd grows rapidly
Slows down when…
! cwnd >= ssthresh
! Or a packet drops

Congestion Avoidance

AIMD mode
ssthresh is lower-bound guess about location of the knee
If cwnd >= ssthresh then  
 each time a segment is ACKed 
 increment cwnd by 1/cwnd (cwnd += 1/cwnd).
So cwnd is increased by one only if all segments have
been acknowledged

 49

Congestion Avoidance Example
 50

0

3

6

9

12

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

Round Trip Times

cw
nd

 (i
n

se
gm

en
ts

)

Slow
Start

cwnd >= ssthresh

cwnd = 1

cwnd = 2

cwnd = 4

cwnd = 8

cwnd = 9

ssthresh = 8

TCP Pseudocode

Initially: 
cwnd = 1;  
ssthresh = adv_wnd;

New ack received:  
if (cwnd < ssthresh)  
 /* Slow Start*/ 
 cwnd = cwnd + 1;  
else  
 /* Congestion Avoidance */  
 cwnd = cwnd + 1/cwnd;

Timeout: 
/* Multiplicative decrease */  
ssthresh = cwnd/2;  
cwnd = 1;

 51

The Big Picture

Time

cw
nd

Timeout

Slow Start

Congestion
Avoidance

 52

ssthresh

❑ UDP
❑ TCP
❑ Congestion Control
❑ Evolution of TCP
❑ Problems with TCP

Outline 53

The Evolution of TCP
 54

Thus far, we have discussed TCP Tahoe
! Original version of TCP

However, TCP was invented in 1974!
! Today, there are many variants of TCP
Early, popular variant: TCP Reno
! Tahoe features, plus…
! Fast retransmit
! Fast recovery

TCP Reno: Fast Retransmit
 55

Reno: retransmit after 3
duplicate ACKs

1

2
3

4
5
6
7

cwnd = 1

cwnd = 2

cwnd = 4

2

3
4

4
4
4

3 Duplicate
ACKs

The Big Picture

Time

cw
nd

3 DUPACKs

Slow Start

Congestion
Avoidance

 56

ssthresh

Timeout

TCP Reno: Fast Recovery

After a fast-retransmit set cwnd & ssthresh to cwnd/2
! i.e. don’t reset cwnd to 1
! Avoid unnecessary return to slow start
! Prevents expensive timeouts
But when RTO expires still do cwnd = 1
! Return to slow start
! Indicates packets aren’t being delivered at all
! i.e. congestion must be really bad

 57

Fast Retransmit and Fast Recovery

At steady state, cwnd oscillates around the optimal
window size
TCP always forces packet drops

 58

Time

cw
nd

Timeout

Slow Start

Congestion Avoidance
Fast Retransmit/Recovery

ssthresh

Timeout

Many TCP Variants…
 59

Tahoe: the original
! Slow start with AIMD
! Dynamic RTO based on RTT estimate
Reno: fast retransmit and fast recovery
NewReno: improved fast retransmit
! Each duplicate ACK triggers a retransmission
! Problem: >3 out-of-order packets causes pathological

retransmissions
Vegas: delay-based congestion avoidance
And many, many, many more…

Common TCP Options
 60

Window scaling
SACK: selective acknowledgement
Maximum segment size (MSS)
Timestamp

Options

Destination Port
0 16 31

Sequence Number
Source Port

Acknowledgement Number
Advertised Window

Urgent Pointer
Flags

Checksum

4

HLen

SACK: Selective Acknowledgment
 61

Problem: duplicate ACKs only tell us
about 1 missing packet
! Multiple rounds of dup ACKs needed to

fill all holes

Solution: selective ACK
! Include received, out-of-order

sequence numbers in TCP header
! Explicitly tells the sender about holes in

the sequence

8
9
10
11

4

4
5
6
7

4

4
4
4

Other Common Options
 62

Maximum segment size (MSS)
! Essentially, what is the hosts MTU
! Saves on path discovery overhead
Timestamp
! When was the packet sent (approximately)?
! Used to prevent sequence number wraparound

Issues with TCP
 63

The vast majority of Internet traffic is TCP
However, many issues with the protocol
! Lack of fairness
! Poor performance with small flows
! Really poor performance on wireless networks
! Susceptibility to denial of service

SYN Cookies
 64

Did the client really send me a SYN recently?
! Timestamp: freshness check
! Cryptographic hash: prevents spoofed packets

Maximum segment size (MSS)
! Usually stated by the client during initial SYN
! Server should store this value…
! Reflect the clients value back through them

Sequence NumberTimestamp
310 5

MSS
8

Hash of two end-points’ IP & Port

SYN Cookies in Practice
 65

Advantages
! Effective at mitigating SYN floods
! Compatible with all TCP versions
! Only need to modify the server
! No need for client support
Disadvantages
! MSS limited to 3 bits, may be smaller than clients actual MSS
! Server forgets all other TCP options included with the client’s

SYN
■ SACK support, window scaling, etc.

